在Spring Boot商城系统中,涉及大数据量的业务情景主要包括以下几类:
1. 商品管理
- 情景:商品信息、库存、分类、属性等数据量大,尤其是大型商城,商品数量可能达到百万级。
- 应对措施:
- 分库分表:将商品数据按类别或ID分库分表,减轻单表压力。
- 缓存:使用Redis等缓存商品信息,减少数据库查询。
- 搜索引擎:使用Elasticsearch提升商品搜索性能。
2. 订单管理
- 情景:订单数据随时间增长,尤其是促销时订单量激增。
- 应对措施:
- 分库分表:按用户ID或时间分库分表。
- 异步处理:使用消息队列(如Kafka)异步处理订单,避免系统阻塞。
- 冷热数据分离:将历史订单归档,减少主表数据量。
3. 用户行为分析
- 情景:用户浏览、点击、购买等行为数据量大,且需要实时分析。
- 应对措施:
- 大数据平台:使用Hadoop、Spark等处理用户行为数据。
- 实时计算:使用Flink、Storm进行实时分析。