相似性搜索算法

本文介绍了乘积量化(PQ)、HierarchicalNavigableSmallWorlds(HNSW)和LocalitySensitiveHashing(LSH)三种在向量数据库中常用的近似最近邻搜索算法。PQ强调高效性和存储效率,HNSW以高效搜索和召回率为特点,而LSH则通过随机投影实现高效处理高维数据。文章详细讨论了各自的优点和缺点,如量化误差、内存消耗和参数调整等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Product Quantization (PQ) 

乘积量化,是一种在向量数据库中使用的技术。其原理主要是将原来的向量空间分解为若干个低维向量空间的笛卡尔积,并对分解得到的低维向量空间分别进行量化。这样,每个向量就能由多个低维空间的量化code组合表示。

乘积量化是为了在内存和效率之间求得一个平衡,既保证图像索引结构需要的内存足够,又使得检索质量和速度比较好。对于任何基于固定维数特征的事物,乘积量化都可以应用到其索引结构的建立及检索上。它属于ANN(approximate nearest neighbor)算法范畴。

在相似性搜索的上下文中,乘积量化算法的使用能够显著加快距离计算的速度,特别是在处理大规模、高维度的向量数据时。通过将向量分解为低维空间的组合,乘积量化能够更有效地进行相似度比较,从而提高搜索效率。

优点:

  1. 高效性:通过将原始高维向量空间分解为多个低维向量空间的笛卡尔积,乘积量化能够更高效地处理向量数据。这种分解使得在相似性搜索时,可以更快地计算向量之间的距离或相似度,从而显著提高检索速度。
  2. 存储效率:乘积量化能够有效降低存储空间的需求。通过将向量分解为多个低维空间的量化code组合表示,可以显著减少存储每个向量所需的空间。这对于处理大规模向量数据库非常有利,有助于节省存储资源。
  3. 可扩展性:乘积量化算法适用于分布式存储和计算环境,可以轻松处理大规模数据。通过分布式存储和并行计算,可以进一步提高检索性能和扩展性。

缺点:

  1. 量化误差:乘积量化过程中可能会引入量化误差。由于量化是将连续的值映射到离散的code上,这可能会导致一些信息的丢失。在极端情况下,可能会将欧式空间中相邻的特征量化到不同的code word上,从而影响检索的准确性。
  2. 优化复杂性:为了降低量化误差,可能需要采用一些优化措施,如重新训练codebook或调整量化参数。这些优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个堆栈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值