题目:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 ="great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string"rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of"great"
.
Similarly, if we continue to swap the children of nodes"eat"
and
"at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of"great"
.
Given two strings s1 and s2 of the same length, determine ifs2 is a scrambled string of s1.
题解:
递归解法,但是无法通过时间限制。递归时那一陀计算substr的操作一定要谨慎。准备琢磨一下动态规划做法。
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1.length() == 1)
if(s1.compare(s2) == 0)
return true;
bool result = false;
isScrambleRecursion(s1, s2, result);
return result;
}
bool isScrambleRecursion(string s1, string s2, bool& result)
{
if(s1.length() == 1)
if(!s1.compare(s2))
{
return true;
}
for(int div = 0; div < s1.length()-1; div++)
{
result = (isScrambleRecursion(s1.substr(0, div+1), s2.substr(0, div+1), result) &&
isScrambleRecursion(s1.substr(div+1, s1.length()-div-1), s2.substr(div+1, s2.length()-div-1), result)) ||
(isScrambleRecursion(s1.substr(0, div+1), s2.substr(s2.length()-1-div, div+1), result)
&& isScrambleRecursion(s1.substr(div+1, s1.length()-div-1), s2.substr(0, s2.length()-div-1), result));
if(result)
return true;
}
}
};
还是递归,进行了一下“剪枝”,大大减少了不必要的比较次数,16ms通过。
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1.length() == 1)
if(s1.compare(s2) == 0)
return true;
bool result = false;
isScrambleRecursion(s1, s2, result);
return result;
}
bool isScrambleRecursion(string s1, string s2, bool& result)
{
if(s1.length() == 1)
if(!s1.compare(s2))
{
return true;
}
int A[26] = {0};
for(int i = 0; i < s1.length(); i++)
++A[s1[i]-'a'];
for(int j = 0; j < s2.length(); j++)
--A[s2[j]-'a'];
for(int k = 0; k < 26; k++)
if(A[k] != 0) return false;
for(int div = 0; div < s1.length()-1; div++)
{
result = (isScrambleRecursion(s1.substr(0, div+1), s2.substr(0, div+1), result) &&
isScrambleRecursion(s1.substr(div+1, s1.length()-div-1), s2.substr(div+1, s2.length()-div-1), result)) ||
(isScrambleRecursion(s1.substr(0, div+1), s2.substr(s2.length()-1-div, div+1), result)
&& isScrambleRecursion(s1.substr(div+1, s1.length()-div-1), s2.substr(0, s2.length()-div-1), result));
if(result)
return true;
}
}
};