Google Cardboard与Oculus IMU融合算法

本文分享了IMU融合代码的实现与应用,包括Oculus和GoogleCardboard两种方式。源码可在GitHub找到,适用于Android设备,通过切换宏定义选择不同实现。Oculus采用多种滤波平滑数据,而Cardboard则运用扩展卡尔曼滤波进行姿态预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近重新整理了IMU融合相关的代码实现,目前开源并有很好的运行效果的有Oculus(很久之前的SDK,最新版本融合Camera和IMU的SLAM定位版本已经不开源)和Google Cardboard,为了可以在普通手机设备上运行和调试,已将Oculus和Cardboard中IMU融合的代码提取出来,并使用简单的opengl场景展示了姿态追踪效果,整个工程使用Android Studio编译,可直接在任意一款安卓手机运行,通过修改代码中的宏定义,可以切换Oculus和Cardboard的实现方式。

源码地址: 

https://github.com/wzj5530/EKF_IMUFusion

运行效果图:

原理介绍:

1. Oculus的实现代码上复杂度比较低,使用了各种滤波来平滑加速度和角速度数据,参考代码完全可以看懂实现原理。

2. Cardboard使用的扩展卡尔曼滤波的方式,角速度数据作为状态转移控制,加速度数据作为观测值,预测状态为当前的手机旋转姿态; 整个推导过程可以参考下面的文章,非常详尽的推导了每一步实现:

https://www.cnblogs.com/ilekoaiq/p/8710812.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值