
大语言模型/对话问答/自然语言处理
文章平均质量分 87
大语言模型/对话问答/自然语言处理
小爷毛毛(卓寿杰)
NLP对话问答、大模型、AIGC。
微信:毛毛AIGC,欢迎关注进一步交流!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图结构知识构造方法详解 ——面向垂直领域的高效知识库构建方案
本文提出了一种基于图结构的知识构造方法,旨在解决当前大语言模型在垂直领域应用中的知识孤岛问题。该方法通过四层处理引擎设计,包含表格智能重构、网页深度提取、文本动态划分和相似问挖掘等关键技术突破。实验表明,相比传统方案,该方法在医疗、金融等领域的知识召回完整度提升33.8%-67.3%。文章还提供了快速集成示例和参数调优指南,帮助开发者快速应用该技术。原创 2025-07-31 16:13:05 · 13 阅读 · 0 评论 -
Chain of Draft:以极简推理加速大模型思考——原理、代码实现与性能突破
摘要: Chain of Draft (CoD) 是一种新型推理范式,通过极简草稿(≤5词/步)替代传统Chain-of-Thought的冗余计算,显著降低LLM推理成本。实验显示,CoD在GSM8K等任务中保持90%+准确率的同时,平均减少85% Token消耗和65%延迟。其核心创新在于:1)硬约束中间态长度;2)仅保留关键计算节点;3)与工程师草稿思维对齐。代码实现包含动态提示组合、多后端LLM适配等模块,支持通过CLI快速验证不同任务/模型的性能提升。该技术为高成本大模型推理提供了轻量化解决方案。原创 2025-07-27 16:51:56 · 25 阅读 · 0 评论 -
KTO原理与代码实现全解析:人类行为理论驱动的大模型对齐
本文介绍了一种基于前景理论的大模型对齐方法KTO(Kahneman-Tversky Optimization),其核心是通过行为经济学的价值函数设计来优化人类感知效用。KTO创新性地将损失厌恶系数(λ=2.25)和风险敏感系数(α=0.88)融入奖励函数,实现分段优化:收益区域采用凹函数(边际递减),损失区域采用凸函数(放大损失厌恶)。关键技术包括滑动窗口KL散度估计参考点z0,通过错位配对和流式更新确保数值稳定性。完整方案包含数据预处理、模型训练和参考点动态估计等模块,为AIGC对齐提供了新思路。原创 2025-07-24 19:02:20 · 30 阅读 · 0 评论 -
基于大模型的动态用户画像采集系统设计与实现
摘要: 本文提出了一种基于大模型的动态参数采集系统,解决传统数据采集中的隐私风险、交互僵化和数据处理难题。系统通过参数存储表(MongoDB)与对话管理模块(动态Prompt)协同工作,在自然对话中实现结构化参数抽取,支持医疗预问诊等场景。核心创新包括动态参数路由、上下文感知的Prompt构建和下游任务扩展能力,并通过Redis缓存和批量处理优化性能。未来将扩展多模态参数采集和联邦学习架构,推动显性表达数据化的技术演进。原创 2025-07-23 11:30:49 · 29 阅读 · 0 评论 -
基于大语言模型的虚拟人视频全自动生成技术解析
文章摘要: 本文介绍了基于大模型的虚拟人视频生成技术,该系统通过"对话生成-知识蒸馏-跨模态合成"创新架构,将制作成本降至传统方案的0.3%。核心技术包括:1)百亿级大模型对话生成系统;2)知识蒸馏训练实现模型轻量化;3)多模态合成引擎实现4K视频实时渲染。测试数据显示,该方案使视频制作耗时从8.5小时缩短至4.2分钟,成本降低99.7%,同时支持48种语言。目前已在教育、电商等领域落地应用,未来有望实现电影级AI视频生成,但仍需解决实时渲染延迟等挑战。原创 2025-07-16 10:25:58 · 74 阅读 · 0 评论 -
自然语言指令驱动的工业机器人协同学习系统:大语言模型如何重塑智能体协作范式
本文提出一种突破性多智能体系统方案,通过“环境状态符号化建模+技能API原子化设计”双引擎架构,解决传统系统在语义理解、动态协同和自适应学习方面的瓶颈。核心技术包括运动语义解析器(自然语言→动作模板)、函数编码映射器(生成可执行代码)及自主检索增强器(失败自修复)。实测显示,该系统在模糊指令理解准确率(提升84%)、新场景适应速度(加快300倍)和多机协同效率(吞吐量提升40%)上实现显著突破,为智能制造等领域提供新一代智能体解决方案。原创 2025-07-15 10:49:42 · 82 阅读 · 0 评论 -
【Dify(v1.x) 核心源码深入解析】ops 模块
摘要:Dify的Ops模块作为可观测性核心子系统,通过全链路追踪、多供应商适配、异步处理和数据加密等机制,实现对AI应用运行数据的统一管理。其架构包含数据建模、供应商适配、安全加密和异步处理四大核心模块,支持LangSmith、Weave等10+供应商的无缝集成。关键技术点包括:1)7类追踪实体抽象;2)适配器模式实现供应商扩展;3)租户级AES加密;4)队列化异步处理机制。该模块通过标准化接口和批量化处理,在保证性能的同时满足企业级安全合规要求。原创 2025-07-14 13:37:57 · 42 阅读 · 0 评论 -
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
多模态融合:GOT-OCR2.0视觉模型与LLM的深度耦合政务先验知识注入:红头/公章/文号等专项优化双Agent验证架构:确保关键信息抽取的可靠性。原创 2025-07-05 15:05:58 · 127 阅读 · 0 评论 -
基于大模型与知识图谱的对话引导意图澄清系统技术解析
本文提出了一种基于知识图谱与大语言模型的意图澄清系统,旨在解决传统RAG模型在跨文档推理和主动澄清方面的不足。系统通过知识图谱驱动的多跳推理机制和链式思维引导的对话流程,实现了动态信息补全和意图澄清。核心创新包括:1)知识图谱构建与节点选择算法;2)标签探索策略与原子事实提取方法;3)主动澄清引擎的工作流程。实验表明,该系统能有效提升复杂查询的准确率,在医疗、金融等领域实现精准交互。关键代码展示了节点选择、标签匹配和事实提取等核心组件的实现细节。原创 2025-07-04 14:22:29 · 140 阅读 · 0 评论 -
检索增强的大模型 NLP2SQL 生成
组件功能在 NLP2SQL 中的应用检索器根据输入查找相关上下文从知识库中查找相关DDL、文档和SQL示例生成器基于上下文生成响应根据检索结果生成准确SQL语句知识库存储结构化信息包含数据库模式、业务术语和查询示例# 转换消息格式# 调用自定义API。原创 2025-06-07 10:51:53 · 119 阅读 · 0 评论 -
检索增强的大模型工具调用:语义驱动的精准API选择技术
在大型语言模型(LLM)应用中,工具调用能力已成为连接AI与真实世界的桥梁。然而,传统方法存在工具选择不准确、参数匹配错误等问题。本文将深入探讨检索增强工具选择器(Retrieval-Augmented Tool Selector) 如何通过语义嵌入技术解决这些挑战。原创 2025-06-03 17:12:08 · 823 阅读 · 0 评论 -
深入解读Qwen3技术报告(六):Qwen3性能评估
Qwen3性能评估框架概览 Qwen3采用多维度评估体系,涵盖基础能力、专业领域、多语言支持、指令执行、安全性和实际应用六大维度。评估方法结合标准化基准测试(如MMLU、GSM8K)、自动化指标分析和人类专家评估,并与主流模型(Llama-3、GPT-4等)进行横向对比。该框架通过量化指标和质性分析,全面衡量模型的语言理解、专业问题解决及安全合规等核心能力,为AI模型评估提供系统化方法论。评估结果展现Qwen3在语言处理和专业任务中的综合性能表现。原创 2025-05-26 13:53:09 · 300 阅读 · 0 评论 -
深入解读Qwen3技术报告(五):后训练对齐
摘要: 本章解析了Qwen3大模型的后训练对齐技术,通过多阶段框架(监督微调、偏好对齐、安全对齐)实现三大目标:有用性、安全性和诚实性。监督微调阶段使用百万级高质量指令-回答对数据,覆盖119种语言和多样化任务类型;偏好对齐通过强化学习优化人类偏好;安全对齐专门训练模型拒绝有害请求。代码示例展示了分阶段对齐流程,强调各环节的协同作用与目标平衡(如安全性与有用性的权衡),最终将基础模型转化为符合人类价值观的AI助手。原创 2025-05-26 11:04:29 · 388 阅读 · 0 评论 -
深入解读Qwen3技术报告(四):Qwen3的预训练之旅
Qwen3的预训练过程通过大规模、多样化的数据构建和优化,显著提升了模型的基础能力和知识储备。与Qwen2.5相比,Qwen3的预训练数据规模翻倍,支持语言数量增加至119种,领域覆盖更加广泛,包括编程、STEM、推理任务、书籍、多语言文本和合成数据等。团队创新性地利用多模态模型从PDF文档中提取高质量文本,并通过合成数据生成策略,利用现有模型生成特定领域的内容,进一步丰富了数据来源。这些策略为Qwen3提供了坚实的知识基础和语言理解能力,确保了其卓越的性能表现。原创 2025-05-23 13:15:45 · 232 阅读 · 0 评论 -
深入解读Qwen3技术报告(三):深入剖析Qwen3模型架构
本文深入剖析了Qwen3模型的架构设计,重点介绍了其基础组件和创新点。Qwen3基于Transformer解码器,采用了层前归一化、分组查询注意力(GQA)等改进技术,以提升性能和计算效率。GQA通过让多个查询头共享同一组键值头,减少了参数量和计算量,同时保持了模型的表现力。此外,Qwen3的架构设计还考虑了扩展性和训练稳定性,使其在大型语言模型中具有显著优势。通过这些技术细节的解析,读者可以更好地理解Qwen3强大能力背后的架构秘密。原创 2025-05-22 16:37:06 · 1374 阅读 · 0 评论 -
深入解读Qwen3技术报告(二):Qwen3模型系列全景
Qwen3模型系列是一个从微型到巨型的AI家族,涵盖了从0.6B到235B参数的全系列模型,分为密集模型和混合专家模型(MoE)两大类。密集模型系列包括从Qwen3-0.6B到Qwen3-32B的多个模型,适用于从移动设备到高性能服务器的各种场景。MoE模型系列则通过稀疏激活的架构,在保持计算量稳定的同时大幅增加参数量,适用于需要高性能但资源有限的场景。Qwen3系列的核心技术创新包括思考模式与非思考模式的统一框架、思考预算机制以及高效的MoE架构,这些创新使得Qwen3能够在不同场景下灵活应对复杂任务,提原创 2025-05-22 13:17:33 · 212 阅读 · 0 评论 -
深入解读 Qwen3 技术报告(一):引言
本文详细解析了Qwen3的核心架构、预训练策略、后训练优化体系及性能评估与工程实践。Qwen3采用混合专家模型(MoE)和优化后的注意力机制,通过三阶段预训练策略构建大规模多语言语料库,并利用长上下文训练技术扩展模型能力。后训练阶段引入双模融合机制和强化学习策略,进一步提升模型性能。评估体系涵盖通用知识、数学推理、代码生成等多维度指标,工程实践中通过动态批处理和量化部署优化推理效率。Qwen3在多项任务中表现出色,尤其在多语言能力和代码生成方面具有显著优势。原创 2025-05-20 15:26:11 · 355 阅读 · 0 评论 -
【Dify(v1.x) 核心源码深入解析】errors、extension 和 external_data_tool 模块
通过对 Dify 中 errors、extension 和 external_data_tool 模块的深入剖析,我们不仅了解了其各个模块内部的精细结构和工作原理,还掌握了它们之间的关联与协同机制。这些模块为 Dify 应用提供了强大的错误处理、灵活的扩展能力和便捷的外部数据集成支持,是构建现代化、高性能软件系统的重要基石。希望本文的讲解能够帮助您更好地理解和运用 Dify,激发您在软件开发领域的更多创意和实践。原创 2025-04-24 13:27:58 · 214 阅读 · 0 评论 -
【Dify(v1.x) 核心源码深入解析】Agent 模块
Agent 模块是 Dify 中负责处理用户请求的核心组件。接收用户输入并解析请求。根据请求内容调用合适的工具或模型。生成响应并返回给用户。管理整个交互流程,包括工具调用、消息处理和状态管理。通过本文的详细解析,我们深入了解了 Dify 的 Agent 模块的架构设计和实现细节。Agent 模块通过灵活的策略、丰富的工具、高效的消息处理和状态管理,为开发者提供了一个强大的 AI 应用开发平台。希望本文能帮助你更好地理解和使用 Dify 的 Agent 模块。更智能的策略。原创 2025-04-15 14:02:23 · 995 阅读 · 0 评论 -
中医名医 AI 个人大脑(LLM)技术方案详解
随着人工智能技术的飞速发展,越来越多的领域开始探索如何将AI与传统行业深度融合。中医作为中国传统文化的重要组成部分,其传承与发展一直面临诸多挑战。《中医名医 AI 个人大脑(LLM)技术方案》旨在通过AI技术为每位名医打造个性化大脑,实现中医知识的沉淀、传承与创新。原创 2025-04-15 12:04:28 · 132 阅读 · 0 评论 -
【斯坦福】【ICLR】RAPTOR:基于树结构的检索增强技术详解
上图展示了 RAPTOR 树的构建过程。从叶节点(文本块)开始,通过递归地嵌入、聚类和摘要,构建出一个多层次的树状结构。每个父节点包含其子节点的摘要,从而形成了不同抽象层次的表示。RAPTOR 的核心思想是利用文本摘要来允许在不同尺度上进行检索增强,从而有效地处理长文档。文本分割与嵌入:将检索语料库分割成短文本块(约 100 个 token),并使用 SBERT(Sentence-BERT)对这些文本块进行嵌入,形成叶节点。聚类与摘要:对嵌入后的文本块进行聚类,然后使用语言模型对每个聚类生成摘要。原创 2025-03-28 11:51:48 · 1099 阅读 · 0 评论 -
RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
在自然语言处理领域,传统问答系统往往面临两大难题:如何突破模型知识边界?如何保障回答的可信度?RAG(Retrieval-Augmented Generation)架构应运而生。而当我们以工程视角实现RAG时,就需要一个标准化的载体——RAG Agent。原创 2025-03-07 13:18:55 · 1313 阅读 · 0 评论 -
DeepSeek-R1/Zero、RL GRPO以及蒸馏过程详解
传统方法:老师先教 1000 道例题(SFT 数据),学生模仿练习。R1-Zero 方法:直接扔给学生 100 万道题,配一台“自动批改机”。学生自己摸索解法,机器实时反馈对错。最终,学生总结出一套高效的解题套路,甚至超越老师教的答案。这就是 R1-Zero 的核心——让 AI 在“题海战术+自动批改”中自我顿悟。传统做法:召集全国名师手写答案 → 耗时十年,成本爆炸。AI 辅助做法Step1:请 10 位名师写 100 道标准答案(冷启动数据)。Step2。原创 2025-02-11 15:32:55 · 1825 阅读 · 0 评论 -
问题修复记录:Xinference部署 Embedding Model 服务偶发超时
用 Xinference 部署Embedding Model,正常来说一次调用在 0.0x s 就能返回了,但是总会调着调着突然有超时的情况(超时设置为 0.2s)。这里模型我是部署了2个实例,每次的2次超时是在不同实例上的。可以看到偶发的超时是有规律性的,每隔20次调用都会超时2次。原创 2025-01-26 13:46:37 · 306 阅读 · 0 评论 -
问题修复记录:Linux docker 部署 Dify,无法调用宿主机本地服务
使用docker compose启动Dify后,在其中配置本地xinference中的模型,报错:get xinference model extra parameter failed, url: http://127.0.0.1:9997/v1/models/bge-m3, error: HTTPConnectionPool(host=‘127.0.0.1’, port=9997): Max retries exceeded with url: /v1/models/bge-m3 (Caused by N原创 2025-01-23 12:41:33 · 1640 阅读 · 0 评论 -
构建高效大模型技术栈:从算力资源到算法应用的实践与思考
自加入新的团队以来,我有幸领导了大模型团队的技术框架建设工作。在这段时间里,我们构建了一个三层架构(L0-L2),旨在为复杂的产品和业务需求提供强有力的支持。本文将分享我们在这一过程中的经验、遇到的挑战以及未来的展望。原创 2025-01-20 13:18:41 · 1002 阅读 · 0 评论 -
【vLLM】使用PagedAttention 进行大型语言模型的高效显存管理
大型语言模型(LLM, Large Language Models)是人工智能领域的一种深度学习模型,它们通过处理大量的文本数据来学习语言的模式,并能完成诸如文本生成、翻译、问答等多种任务。这些模型通常包含数十亿个参数,需要相当大的计算资源来进行训练和服务(即推理或预测)。在服务阶段,模型的参数、中间计算结果(激活值)、以及键值缓存(KV cache)都需要占用显存空间。如上图所示,当在一个 NVIDIA A100 GPU 上部署一个拥有130亿参数的大型语言模型时的显存布局情况。原创 2025-01-05 17:05:35 · 1261 阅读 · 0 评论 -
LLM指令微调实践与分析
模型微调是指通过微调工具,加入企业独有的场景数据,对平台的基础模型进行微调。它可以帮助你快速定制出更符合你业务场景需求的专属大模型。它的优势在于对基础模型进行少量调整,满足特定的需求。相比训练新模型高效且低成本。原创 2024-09-03 16:21:05 · 918 阅读 · 0 评论 -
解读:【小爱同学】智能问答系统
上述挖掘的都是比较简单的模型。如“世界之最”的问题。首先意图判断:query是否包含世界之最支持实体类型,以及是否包含最大、最小、第一、第二等触发词。作者基于结构化词条、问答论坛的数据,来进行模板挖掘的。当问答论坛数据中,问题包含实体,答案包含属性值,就可以以此构造解析模板。模型可能对于某些类的预测比较差,而这些类在随机负采样中未能覆盖到。“圆柱体的体积怎么算”- “圆柱体的面积怎么算”增强结果,得到正样本:Q1’、Q2’找到Q2’,与Q2相似度 < 0.3。增强结果,得到负样本:Q1’、Q2’原创 2022-01-20 14:33:54 · 4620 阅读 · 0 评论 -
解读:【美团】智能客服实践
客服结束一通咨询后,需进行背景、诉求、处理结果的填写。智能的会话摘要,可以提升客服坐席工作效率,改善其办公体验。作者的方案进行了如下的演进:效果如下:我理解,在这个业务场景下,其实用抽取式摘要是不太合理的。抽取式摘要适用于新闻摘要的场景,但是对话摘要的摘要和原文的文本表达方式是大相径庭的。还有相比单纯的文本摘要,对话摘要更加合适结合半结构化模板来做。因为客服咨询对话核心要点是固定的,如:背景、诉求、处理结果等。而且,这样的摘要更适用于客服后续跟进时进行查阅。原创 2022-02-05 14:27:28 · 2407 阅读 · 0 评论 -
LLM微调原理详解
指令微调是指使用自然语言形式的数据对预训练后的大语言模型进行参数微调的过程。指令微调中的数据组织策略非常重要,因为它直接影响到模型最终的能力。指令微调是针对预训练的大语言模型进行的一项训练技术,旨在让模型更好地理解和执行特定的指令。指令数据构建的提升方法主要包括指令格式设计、扩展指令数量以及指令重写与筛选这三个方面。LoRA在大语言模型的微调中被广泛应用,能够显著降低模型训练成本。【腾讯文档】【第3章】低成本的领域&私域大模型训练方法。【腾讯文档】【第3章】低成本的领域&私域大模型训练方法。原创 2024-09-02 14:58:43 · 505 阅读 · 0 评论 -
LLM与知识图谱
在这个示例中,我们首先随机打乱社区摘要的顺序,然后将它们分割成更小的块,每个块的长度不超过50个字符。Answer Reasoning 是指代理(智能助手)在探索图结构并收集相关信息后,根据笔记本中记录的不同探索路径的信息来推断和回答问题的过程。Initial Node(初始节点)是指从图结构中选择的一个或几个节点,这些节点将成为探索图结构以寻找答案的起点。这种增强方法的基本思想是从知识图谱中检索出与问题相关的子图,并将这些子图的信息提供给大语言模型,从而增强模型的回答能力。原创 2024-09-02 14:10:08 · 910 阅读 · 0 评论 -
LLM的推理详解
在没有长度惩罚的情况下,解码算法倾向于生成较短的序列,因为随着序列的增长,序列的概率(实际上是概率的乘积)会呈指数级减小,导致较长序列的累积概率低于较短序列,即使较长序列的每个词的概率都很高。这一策略的基本思想是,由于大型语言模型通常具有更广泛的知识和更强的生成能力,它们倾向于为重要的词元分配更高的概率。模型蒸馏,或称知识蒸馏,是一种在深度学习领域中广泛应用的技术,其目标是将一个大型、复杂的模型(教师模型)的知识转移到一个较小、较简单的模型(学生模型)中。原创 2024-08-18 15:41:15 · 317 阅读 · 0 评论 -
LLM 模型架构详解
最终,所有被选中的专家的意见(输出)会被综合考虑(加权求和),形成一个全面的治疗方案(模型的最终输出)。残差连接就像是在爬山时携带的一条绳子,绑在你已经到达的高度(先前的层的输出),这样即便探索的新路径(新一层的计算)没有带你更高,你还可以通过绳子回到之前的高点,保证至少不会后退。不同于Transformer模型,后者通过注意力机制几乎无差别地考虑所有过去的输入,S4通过矩阵B和C的变化与输入内容直接相关联,这意味着不同的输入序列会有不同的矩阵B和C,从而模型能更加智能地决定哪些信息重要,哪些可以忽略。原创 2024-07-19 17:11:04 · 378 阅读 · 0 评论 -
【大模型系列故事】从单词魔术师到思维巨人
直到GPT系列的诞生,特别是GPT-3和ChatGPT,它们仿佛一夜之间长大成人,能够独立思考,解决各种难题,甚至进行创造性的工作,不需要太多微调,就像是拥有广泛知识和经验的智者,能在各种场合游刃有余。在90年代,语言模型还处于蹒跚学步的阶段,就像孩子刚开始学习词汇,比如n-gram模型,它们能学会预测下一个单词,但对复杂语境的理解还很有限,像一个只会背诵单词的小朋友。总之,大语言模型的出现,就像一场科技界的文艺复兴,让机器不再是冰冷的工具,而成了有温度、有智慧的伙伴,一起开启了一个充满无限可能的新时代。原创 2024-06-04 16:18:04 · 166 阅读 · 0 评论 -
ChatGPT和OpenAI API将如何颠覆我们的生活?
无论是写文章、解决问题,还是进行自然语言处理,ChatGPT和OpenAI API都可以帮助我们更快速、更准确地完成。通过Prompt Engineering,我们可以更好地理解ChatGPT的工作原理,从而更好地利用它。通过使用OpenAI API,我们可以更深入地了解人工智能的各个方面,从而更好地利用它。还有OpenAI API,这个由OpenAI公司提供的API,可以让我们轻松地实现各种人工智能应用。而且,OpenAI API还提供了各种预训练模型,你只需要简单地调用API,就能实现各种复杂的功能。原创 2024-03-31 16:27:30 · 418 阅读 · 0 评论 -
视觉-语言大模型原理
在预训练阶段,Qwen-VL使用了一个大型的语言模型(LLM)作为基础组件,该模型的权重是从Qwen-7B模型中初始化的。此外,基于预训练的Qwen-7B,发布了Qwen-7B-Chat,这是一个基于大型模型的人工智能助手,通过对齐技术进行了训练。通过将Q-Former的输出连接到冻结的语言模型,并训练Q-Former使其输出的视觉表示可以被语言模型解释,从而实现视觉到语言的生成学习。总之,Qwen-VL是一种大规模视觉-语言模型,具备强大的视觉理解能力和灵活的交互能力,可应用于多种实际问题的解决。原创 2023-12-18 17:09:19 · 351 阅读 · 0 评论 -
视觉编解码模型原理
Vision Encoder Decoder Models 是一种用于将图像转换为文本的模型架构。该架构的核心思想是将预训练的基于 Transformer 架构的视觉模型用作编码器(如 ViT、BEiT、DeiT、Swin),将预训练的基于语言模型的文本生成模型用作解码器(如 RoBERTa、GPT-2、BERT、DistilBERT),从而实现图像到文本的转换。原创 2023-11-14 13:55:49 · 479 阅读 · 0 评论 -
AI代理行业案例:“一键成片”虚拟数字人
这一部分为用户提供了工具自定义的功能,使其能够轻松新增自定义工具,进行工具的描述、配置更新和维护。自定义的工具将被添加到工具库中,以备后续使用。这种灵活性和可定制性,使用户能够根据具体需求创建适合其任务的工具,确保了系统的适应性和多功能性。原创 2023-10-29 13:27:13 · 1174 阅读 · 0 评论 -
AI 代理介绍与应用
记忆流(Memory Stream)是生成式代理架构中的一个组件,它是一个长期记忆模块,记录了代理的经历和与环境的交互。记忆流以自然语言的形式呈现,包含了代理的观察、行为、对话和其他与环境相关的信息(以及长期计划(Plan)和更高层次的反思(Reflect)的输出)反应和更新计划(Reacting and Updating Plans)是指代理根据当前的情境和观察到的事件来决定是否继续执行当前的长期计划,或者需要根据新的观察进行反应和更新计划。这些复杂行为和自发事件是由代理之间的互动和环境的变化所驱动的。原创 2023-10-21 08:51:36 · 615 阅读 · 0 评论