hadoop的配置选项

本文整理了Hadoop的主要配置文件,包括core-site.xml、hdfs-site.xml、mapred-site.xml和yarn-site.xml,提供了官方默认配置的链接,帮助读者更好地理解和配置Hadoop集群。

为方便阅读,特在此整理:

core_site.xml

引用:http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml

namevaluedescription
hadoop.common.configuration.version0.23.0version of this configuration file
hadoop.tmp.dir/tmp/hadoop-${user.name}A base for other temporary directories.
io.native.lib.availabletrueShould native hadoop libraries, if present, be used.
hadoop.http.filter.initializersorg.apache.hadoop.http.lib.StaticUserWebFilterA comma separated list of class names. Each class in the list must extend org.apache.hadoop.http.FilterInitializer. The corresponding Filter will be initialized. Then, the Filter will be applied to all user facing jsp and servlet web pages. The ordering of the list defines the ordering of the filters.
hadoop.security.authorizationfalseIs service-level authorization enabled?
hadoop.security.instrumentation.requires.adminfalseIndicates if administrator ACLs are required to access instrumentation servlets (JMX, METRICS, CONF, STACKS).
hadoop.security.authenticationsimplePossible values are simple (no authentication), and kerberos
hadoop.security.group.mappingorg.apache.hadoop.security.JniBasedUnixGroupsMappingWithFallbackClass for user to group mapping (get groups for a given user) for ACL. The default implementation, org.apache.hadoop.security.JniBasedUnixGroupsMappingWithFallback, will determine if the Java Native Interface (JNI) is available. If JNI is available the implementation will use the API within hadoop to resolve a list of groups for a user. If JNI is not available then the shell implementation, ShellBasedUnixGroupsMapping, is used. This implementation shells out to the Linux/Unix environment with the bash -c groups command to resolve a list of groups for a user.
hadoop.security.groups.cache.secs300This is the config controlling the validity of the entries in the cache containing the user->group mapping. When this duration has expired, then the implementation of the group mapping provider is invoked to get the groups of the user and then cached back.
hadoop.security.group.mapping.ldap.url The URL of the LDAP server to use for resolving user groups when using the LdapGroupsMapping user to group mapping.
hadoop.security.group.mapping.ldap.sslfalseWhether or not to use SSL when connecting to the LDAP server.
hadoop.security.group.mapping.ldap.ssl.keystore File path to the SSL keystore that contains the SSL certificate required by the LDAP server.
hadoop.security.group.mapping.ldap.ssl.keystore.password.file The path to a file containing the password of the LDAP SSL keystore. IMPORTANT: This file should be readable only by the Unix user running the daemons.
hadoop.security.group.mapping.ldap.bind.user The distinguished name of the user to bind as when connecting to the LDAP server. This may be left blank if the LDAP server supports anonymous binds.
hadoop.security.group.mapping.ldap.bind.password.file The path to a file containing the password of the bind user. IMPORTANT: This file should be readable only by the Unix user running the daemons.
hadoop.security.group.mapping.ldap.base The search base for the LDAP connection. This is a distinguished name, and will typically be the root of the LDAP directory.
hadoop.security.group.mapping.ldap.search.filter.user(&(objectClass=user)(sAMAccountName={0}))An additional filter to use when searching for LDAP users. The default will usually be appropriate for Active Directory installations. If connecting to an LDAP server with a non-AD schema, this should be replaced with (&(objectClass=inetOrgPerson)(uid={0}). {0} is a special string used to denote where the username fits into the filter.
hadoop.security.group.mapping.ldap.search.filter.group(objectClass=group)An additional filter to use when searching for LDAP groups. This should be changed when resolving groups against a non-Active Directory installation. posixGroups are currently not a supported group class.
hadoop.security.group.mapping.ldap.search.attr.membermemberThe attribute of the group object that identifies the users that are members of the group. The default will usually be appropriate for any LDAP installation.
hadoop.security.group.mapping.ldap.search.attr.group.namecnThe attribute of the group object that identifies the group name. The default will usually be appropriate for all LDAP systems.
hadoop.security.group.mapping.ldap.directory.search.timeout10000The attribute applied to the LDAP SearchControl properties to set a maximum time limit when searching and awaiting a result. Set to 0 if infinite wait period is desired. Default is 10 seconds. Units in milliseconds.
hadoop.security.service.user.name.key For those cases where the same RPC protocol is implemented by multiple servers, this configuration is required for specifying the principal name to use for the service when the client wishes to make an RPC call.
hadoop.security.uid.cache.secs14400This is the config controlling the validity of the entries in the cache containing the userId to userName and groupId to groupName used by NativeIO getFstat().
hadoop.rpc.protectionauthenticationThis field sets the quality of protection for secured sasl connections. Possible values are authentication, integrity and privacy. authentication means authentication only and no integrity or privacy; integrity implies authentication and integrity are enabled; and privacy implies all of authentication, integrity and privacy are enabled.
hadoop.work.around.non.threadsafe.getpwuidfalseSome operating systems or authentication modules are known to have broken implementations of getpwuid_r and getpwgid_r, such that these calls are not thread-safe. Symptoms of this problem include JVM crashes with a stack trace inside these functions. If your system exhibits this issue, enable this configuration parameter to include a lock around the calls as a workaround. An incomplete list of some systems known to have this issue is available at http://wiki.apache.org/hadoop/KnownBrokenPwuidImplementations
hadoop.kerberos.kinit.commandkinitUsed to periodically renew Kerberos credentials when provided to Hadoop. The default setting assumes that kinit is in the PATH of users running the Hadoop client. Change this to the absolute path to kinit if this is not the case.
hadoop.security.auth_to_local Maps kerberos principals to local user names
io.file.buffer.size4096The size of buffer for use in sequence files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
io.bytes.per.checksum512The number of bytes per checksum. Must not be larger than io.file.buffer.size.
io.skip.checksum.errorsfalseIf true, when a checksum error is encountered while reading a sequence file, entries are skipped, instead of throwing an exception.
io.compression.codecs A comma-separated list of the compression codec classes that can be used for compression/decompression. In addition to any classes specified with this property (which take precedence), codec classes on the classpath are discovered using a Java ServiceLoader.
io.compression.codec.bzip2.librarysystem-nativeThe native-code library to be used for compression and decompression by the bzip2 codec. This library could be specified either by by name or the full pathname. In the former case, the library is located by the dynamic linker, usually searching the directories specified in the environment variable LD_LIBRARY_PATH. The value of "system-native" indicates that the default system library should be used. To indicate that the algorithm should operate entirely in Java, specify "java-builtin".
io.serializationsorg.apache.hadoop.io.serializer.WritableSerialization,org.apache.hadoop.io.serializer.avro.AvroSpecificSerialization,org.apache.hadoop.io.serializer.avro.AvroReflectSerializationA list of serialization classes that can be used for obtaining serializers and deserializers.
io.seqfile.local.dir${hadoop.tmp.dir}/io/localThe local directory where sequence file stores intermediate data files during merge. May be a comma-separated list of directories on different devices in order to spread disk i/o. Directories that do not exist are ignored.
io.map.index.skip0Number of index entries to skip between each entry. Zero by default. Setting this to values larger than zero can facilitate opening large MapFiles using less memory.
io.map.index.interval128MapFile consist of two files - data file (tuples) and index file (keys). For every io.map.index.interval records written in the data file, an entry (record-key, data-file-position) is written in the index file. This is to allow for doing binary search later within the index file to look up records by their keys and get their closest positions in the data file.
fs.defaultFSfile:///The name of the default file system. A URI whose scheme and authority determine the FileSystem implementation. The uri's scheme determines the config property (fs.SCHEME.impl) naming the FileSystem implementation class. The uri's authority is used to determine the host, port, etc. for a filesystem.
fs.default.namefile:///Deprecated. Use (fs.defaultFS) property instead
fs.trash.interval0Number of minutes after which the checkpoint gets deleted. If zero, the trash feature is disabled. This option may be configured both on the server and the client. If trash is disabled server side then the client side configuration is checked. If trash is enabled on the server side then the value configured on the server is used and the client configuration value is ignored.
fs.trash.checkpoint.interval0Number of minutes between trash checkpoints. Should be smaller or equal to fs.trash.interval. If zero, the value is set to the value of fs.trash.interval. Every time the checkpointer runs it creates a new checkpoint out of current and removes checkpoints created more than fs.trash.interval minutes ago.
fs.AbstractFileSystem.file.implorg.apache.hadoop.fs.local.LocalFsThe AbstractFileSystem for file: uris.
fs.AbstractFileSystem.hdfs.implorg.apache.hadoop.fs.HdfsThe FileSystem for hdfs: uris.
fs.AbstractFileSystem.viewfs.implorg.apache.hadoop.fs.viewfs.ViewFsThe AbstractFileSystem for view file system for viewfs: uris (ie client side mount table:).
fs.ftp.host0.0.0.0FTP filesystem connects to this server
fs.ftp.host.port21FTP filesystem connects to fs.ftp.host on this port
fs.df.interval60000Disk usage statistics refresh interval in msec.
fs.s3.block.size67108864Block size to use when writing files to S3.
fs.s3.buffer.dir${hadoop.tmp.dir}/s3Determines where on the local filesystem the S3 filesystem should store files before sending them to S3 (or after retrieving them from S3).
fs.s3.maxRetries4The maximum number of retries for reading or writing files to S3, before we signal failure to the application.
fs.s3.sleepTimeSeconds10The number of seconds to sleep between each S3 retry.
fs.automatic.closetrueBy default, FileSystem instances are automatically closed at program exit using a JVM shutdown hook. Setting this property to false disables this behavior. This is an advanced option that should only be used by server applications requiring a more carefully orchestrated shutdown sequence.
fs.s3n.block.size67108864Block size to use when reading files using the native S3 filesystem (s3n: URIs).
io.seqfile.compress.blocksize1000000The minimum block size for compression in block compressed SequenceFiles.
io.seqfile.lazydecompresstrueShould values of block-compressed SequenceFiles be decompressed only when necessary.
io.seqfile.sorter.recordlimit1000000The limit on number of records to be kept in memory in a spill in SequenceFiles.Sorter
io.mapfile.bloom.size1048576The size of BloomFilter-s used in BloomMapFile. Each time this many keys is appended the next BloomFilter will be created (inside a DynamicBloomFilter). Larger values minimize the number of filters, which slightly increases the performance, but may waste too much space if the total number of keys is usually much smaller than this number.
io.mapfile.bloom.error.rate0.005The rate of false positives in BloomFilter-s used in BloomMapFile. As this value decreases, the size of BloomFilter-s increases exponentially. This value is the probability of encountering false positives (default is 0.5%).
hadoop.util.hash.typemurmurThe default implementation of Hash. Currently this can take one of the two values: 'murmur' to select MurmurHash and 'jenkins' to select JenkinsHash.
ipc.client.idlethreshold4000Defines the threshold number of connections after which connections will be inspected for idleness.
ipc.client.kill.max10Defines the maximum number of clients to disconnect in one go.
ipc.client.connection.maxidletime10000The maximum time in msec after which a client will bring down the connection to the server.
ipc.client.connect.max.retries10Indicates the number of retries a client will make to establish a server connection.
ipc.client.connect.timeout20000Indicates the number of milliseconds a client will wait for the socket to establish a server connection.
ipc.client.connect.max.retries.on.timeouts45Indicates the number of retries a client will make on socket timeout to establish a server connection.
ipc.server.listen.queue.size128Indicates the length of the listen queue for servers accepting client connections.
ipc.server.tcpnodelayfalseTurn on/off Nagle's algorithm for the TCP socket connection on the server. Setting to true disables the algorithm and may decrease latency with a cost of more/smaller packets.
ipc.client.tcpnodelayfalseTurn on/off Nagle's algorithm for the TCP socket connection on the client. Setting to true disables the algorithm and may decrease latency with a cost of more/smaller packets.
hadoop.rpc.socket.factory.class.defaultorg.apache.hadoop.net.StandardSocketFactoryDefault SocketFactory to use. This parameter is expected to be formatted as "package.FactoryClassName".
hadoop.rpc.socket.factory.class.ClientProtocol SocketFactory to use to connect to a DFS. If null or empty, use hadoop.rpc.socket.class.default. This socket factory is also used by DFSClient to create sockets to DataNodes.
hadoop.socks.server Address (host:port) of the SOCKS server to be used by the SocksSocketFactory.
net.topology.node.switch.mapping.implorg.apache.hadoop.net.ScriptBasedMappingThe default implementation of the DNSToSwitchMapping. It invokes a script specified in net.topology.script.file.name to resolve node names. If the value for net.topology.script.file.name is not set, the default value of DEFAULT_RACK is returned for all node names.
net.topology.implorg.apache.hadoop.net.NetworkTopologyThe default implementation of NetworkTopology which is classic three layer one.
net.topology.script.file.name The script name that should be invoked to resolve DNS names to NetworkTopology names. Example: the script would take host.foo.bar as an argument, and return /rack1 as the output.
net.topology.script.number.args100The max number of args that the script configured with net.topology.script.file.name should be run with. Each arg is an IP address.
net.topology.table.file.name The file name for a topology file, which is used when the net.topology.node.switch.mapping.impl property is set to org.apache.hadoop.net.TableMapping. The file format is a two column text file, with columns separated by whitespace. The first column is a DNS or IP address and the second column specifies the rack where the address maps. If no entry corresponding to a host in the cluster is found, then /default-rack is assumed.
file.stream-buffer-size4096The size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
file.bytes-per-checksum512The number of bytes per checksum. Must not be larger than file.stream-buffer-size
file.client-write-packet-size65536Packet size for clients to write
file.blocksize67108864Block size
file.replication1Replication factor
s3.stream-buffer-size4096The size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
s3.bytes-per-checksum512The number of bytes per checksum. Must not be larger than s3.stream-buffer-size
s3.client-write-packet-size65536Packet size for clients to write
s3.blocksize67108864Block size
s3.replication3Replication factor
s3native.stream-buffer-size4096The size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
s3native.bytes-per-checksum512The number of bytes per checksum. Must not be larger than s3native.stream-buffer-size
s3native.client-write-packet-size65536Packet size for clients to write
s3native.blocksize67108864Block size
s3native.replication3Replication factor
ftp.stream-buffer-size4096The size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
ftp.bytes-per-checksum512The number of bytes per checksum. Must not be larger than ftp.stream-buffer-size
ftp.client-write-packet-size65536Packet size for clients to write
ftp.blocksize67108864Block size
ftp.replication3Replication factor
tfile.io.chunk.size1048576Value chunk size in bytes. Default to 1MB. Values of the length less than the chunk size is guaranteed to have known value length in read time (See also TFile.Reader.Scanner.Entry.isValueLengthKnown()).
tfile.fs.output.buffer.size262144Buffer size used for FSDataOutputStream in bytes.
tfile.fs.input.buffer.size262144Buffer size used for FSDataInputStream in bytes.
hadoop.http.authentication.typesimpleDefines authentication used for Oozie HTTP endpoint. Supported values are: simple | kerberos | #AUTHENTICATION_HANDLER_CLASSNAME#
hadoop.http.authentication.token.validity36000Indicates how long (in seconds) an authentication token is valid before it has to be renewed.
hadoop.http.authentication.signature.secret.file${user.home}/hadoop-http-auth-signature-secretThe signature secret for signing the authentication tokens. The same secret should be used for JT/NN/DN/TT configurations.
hadoop.http.authentication.cookie.domain The domain to use for the HTTP cookie that stores the authentication token. In order to authentiation to work correctly across all Hadoop nodes web-consoles the domain must be correctly set. IMPORTANT: when using IP addresses, browsers ignore cookies with domain settings. For this setting to work properly all nodes in the cluster must be configured to generate URLs with hostname.domain names on it.
hadoop.http.authentication.simple.anonymous.allowedtrueIndicates if anonymous requests are allowed when using 'simple' authentication.
hadoop.http.authentication.kerberos.principalHTTP/_HOST@LOCALHOSTIndicates the Kerberos principal to be used for HTTP endpoint. The principal MUST start with 'HTTP/' as per Kerberos HTTP SPNEGO specification.
hadoop.http.authentication.kerberos.keytab${user.home}/hadoop.keytabLocation of the keytab file with the credentials for the principal. Referring to the same keytab file Oozie uses for its Kerberos credentials for Hadoop.
dfs.ha.fencing.methods List of fencing methods to use for service fencing. May contain builtin methods (eg shell and sshfence) or user-defined method.
dfs.ha.fencing.ssh.connect-timeout30000SSH connection timeout, in milliseconds, to use with the builtin sshfence fencer.
dfs.ha.fencing.ssh.private-key-files The SSH private key files to use with the builtin sshfence fencer.
hadoop.http.staticuser.userdr.whoThe user name to filter as, on static web filters while rendering content. An example use is the HDFS web UI (user to be used for browsing files).
ha.zookeeper.quorum A list of ZooKeeper server addresses, separated by commas, that are to be used by the ZKFailoverController in automatic failover.
ha.zookeeper.session-timeout.ms5000The session timeout to use when the ZKFC connects to ZooKeeper. Setting this value to a lower value implies that server crashes will be detected more quickly, but risks triggering failover too aggressively in the case of a transient error or network blip.
ha.zookeeper.parent-znode/hadoop-haThe ZooKeeper znode under which the ZK failover controller stores its information. Note that the nameservice ID is automatically appended to this znode, so it is not normally necessary to configure this, even in a federated environment.
ha.zookeeper.aclworld:anyone:rwcdaA comma-separated list of ZooKeeper ACLs to apply to the znodes used by automatic failover. These ACLs are specified in the same format as used by the ZooKeeper CLI. If the ACL itself contains secrets, you may instead specify a path to a file, prefixed with the '@' symbol, and the value of this configuration will be loaded from within.
ha.zookeeper.auth A comma-separated list of ZooKeeper authentications to add when connecting to ZooKeeper. These are specified in the same format as used by the "addauth" command in the ZK CLI. It is important that the authentications specified here are sufficient to access znodes with the ACL specified in ha.zookeeper.acl. If the auths contain secrets, you may instead specify a path to a file, prefixed with the '@' symbol, and the value of this configuration will be loaded from within.
hadoop.ssl.keystores.factory.classorg.apache.hadoop.security.ssl.FileBasedKeyStoresFactoryThe keystores factory to use for retrieving certificates.
hadoop.ssl.require.client.certfalseWhether client certificates are required
hadoop.ssl.hostname.verifierDEFAULTThe hostname verifier to provide for HttpsURLConnections. Valid values are: DEFAULT, STRICT, STRICT_I6, DEFAULT_AND_LOCALHOST and ALLOW_ALL
hadoop.ssl.server.confssl-server.xmlResource file from which ssl server keystore information will be extracted. This file is looked up in the classpath, typically it should be in Hadoop conf/ directory.
hadoop.ssl.client.confssl-client.xmlResource file from which ssl client keystore information will be extracted This file is looked up in the classpath, typically it should be in Hadoop conf/ directory.
hadoop.ssl.enabledfalseWhether to use SSL for the HTTP endpoints. If set to true, the NameNode, DataNode, ResourceManager, NodeManager, HistoryServer and MapReduceAppMaster web UIs will be served over HTTPS instead HTTP.
hadoop.jetty.logs.serve.aliasestrueEnable/Disable aliases serving from jetty
fs.permissions.umask-mode022The umask used when creating files and directories. Can be in octal or in symbolic. Examples are: "022" (octal for u=rwx,g=r-x,o=r-x in symbolic), or "u=rwx,g=rwx,o=" (symbolic for 007 in octal).
ha.health-monitor.connect-retry-interval.ms1000How often to retry connecting to the service.
ha.health-monitor.check-interval.ms1000How often to check the service.
ha.health-monitor.sleep-after-disconnect.ms1000How long to sleep after an unexpected RPC error.
ha.health-monitor.rpc-timeout.ms45000Timeout for the actual monitorHealth() calls.
ha.failover-controller.new-active.rpc-timeout.ms60000Timeout that the FC waits for the new active to become active
ha.failover-controller.graceful-fence.rpc-timeout.ms5000Timeout that the FC waits for the old active to go to standby
ha.failover-controller.graceful-fence.connection.retries1FC connection retries for graceful fencing
ha.failover-controller.cli-check.rpc-timeout.ms20000Timeout that the CLI (manual) FC waits for monitorHealth, getServiceState
ipc.client.fallback-to-simple-auth-allowedfalseWhen a client is configured to attempt a secure connection, but attempts to connect to an insecure server, that server may instruct the client to switch to SASL SIMPLE (unsecure) authentication. This setting controls whether or not the client will accept this instruction from the server. When false (the default), the client will not allow the fallback to SIMPLE authentication, and will abort the connection.
fs.client.resolve.remote.symlinkstrueWhether to resolve symlinks when accessing a remote Hadoop filesystem. Setting this to false causes an exception to be thrown upon encountering a symlink. This setting does not apply to local filesystems, which automatically resolve local symlinks.
nfs3.server.port2049Specify the port number used by Hadoop NFS.
nfs3.mountd.port4242

hdfs_site.xml

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

namevaluedescription
hadoop.hdfs.configuration.version1version of this configuration file
dfs.namenode.logging.levelinfoThe logging level for dfs namenode. Other values are "dir" (trace namespace mutations), "block" (trace block under/over replications and block creations/deletions), or "all".
dfs.namenode.rpc-address RPC address that handles all clients requests. In the case of HA/Federation where multiple namenodes exist, the name service id is added to the name e.g. dfs.namenode.rpc-address.ns1 dfs.namenode.rpc-address.EXAMPLENAMESERVICE The value of this property will take the form of nn-host1:rpc-port.
dfs.namenode.rpc-bind-host The actual address the server will bind to. If this optional address is set, the RPC server will bind to this address and the port specified in dfs.namenode.rpc-address for the RPC server. It can also be specified per name node or name service for HA/Federation. This is most useful for making name node listen to all interfaces by setting to 0.0.0.0.
dfs.namenode.servicerpc-address RPC address for HDFS Services communication. BackupNode, Datanodes and all other services should be connecting to this address if it is configured. In the case of HA/Federation where multiple namenodes exist, the name service id is added to the name e.g. dfs.namenode.servicerpc-address.ns1 dfs.namenode.rpc-address.EXAMPLENAMESERVICE The value of this property will take the form of nn-host1:rpc-port. If the value of this property is unset the value of dfs.namenode.rpc-address will be used as the default.
dfs.namenode.servicerpc-bind-host The actual address the server will bind to. If this optional address is set, the service RPC server will bind to this address and the port specified in dfs.namenode.servicerpc-address. It can also be specified per name node or name service for HA/Federation. This is most useful for making name node listen to all interfaces by setting to 0.0.0.0.
dfs.namenode.secondary.http-address0.0.0.0:50090The secondary namenode http server address and port.
dfs.datanode.address0.0.0.0:50010The datanode server address and port for data transfer.
dfs.datanode.http.address0.0.0.0:50075The datanode http server address and port.
dfs.datanode.ipc.address0.0.0.0:50020The datanode ipc server address and port.
dfs.datanode.handler.count10The number of server threads for the datanode.
dfs.namenode.http-address0.0.0.0:50070The address and the base port where the dfs namenode web ui will listen on.
dfs.https.enablefalseDecide if HTTPS(SSL) is supported on HDFS
dfs.client.https.need-authfalseWhether SSL client certificate authentication is required
dfs.https.server.keystore.resourcessl-server.xmlResource file from which ssl server keystore information will be extracted
dfs.client.https.keystore.resourcessl-client.xmlResource file from which ssl client keystore information will be extracted
dfs.datanode.https.address0.0.0.0:50475The datanode secure http server address and port.
dfs.namenode.https-address0.0.0.0:50470The namenode secure http server address and port.
dfs.datanode.dns.interfacedefaultThe name of the Network Interface from which a data node should report its IP address.
dfs.datanode.dns.nameserverdefaultThe host name or IP address of the name server (DNS) which a DataNode should use to determine the host name used by the NameNode for communication and display purposes.
dfs.namenode.backup.address0.0.0.0:50100The backup node server address and port. If the port is 0 then the server will start on a free port.
dfs.namenode.backup.http-address0.0.0.0:50105The backup node http server address and port. If the port is 0 then the server will start on a free port.
dfs.namenode.replication.considerLoadtrueDecide if chooseTarget considers the target's load or not
dfs.default.chunk.view.size32768The number of bytes to view for a file on the browser.
dfs.datanode.du.reserved0Reserved space in bytes per volume. Always leave this much space free for non dfs use.
dfs.namenode.name.dirfile://${hadoop.tmp.dir}/dfs/nameDetermines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.
dfs.namenode.name.dir.restorefalseSet to true to enable NameNode to attempt recovering a previously failed dfs.namenode.name.dir. When enabled, a recovery of any failed directory is attempted during checkpoint.
dfs.namenode.fs-limits.max-component-length0Defines the maximum number of characters in each component of a path. A value of 0 will disable the check.
dfs.namenode.fs-limits.max-directory-items0Defines the maximum number of items that a directory may contain. A value of 0 will disable the check.
dfs.namenode.fs-limits.min-block-size1048576Minimum block size in bytes, enforced by the Namenode at create time. This prevents the accidental creation of files with tiny block sizes (and thus many blocks), which can degrade performance.
dfs.namenode.fs-limits.max-blocks-per-file1048576Maximum number of blocks per file, enforced by the Namenode on write. This prevents the creation of extremely large files which can degrade performance.
dfs.namenode.edits.dir${dfs.namenode.name.dir}Determines where on the local filesystem the DFS name node should store the transaction (edits) file. If this is a comma-delimited list of directories then the transaction file is replicated in all of the directories, for redundancy. Default value is same as dfs.namenode.name.dir
dfs.namenode.shared.edits.dir A directory on shared storage between the multiple namenodes in an HA cluster. This directory will be written by the active and read by the standby in order to keep the namespaces synchronized. This directory does not need to be listed in dfs.namenode.edits.dir above. It should be left empty in a non-HA cluster.
dfs.namenode.edits.journal-plugin.qjournalorg.apache.hadoop.hdfs.qjournal.client.QuorumJournalManager 
dfs.permissions.enabledtrueIf "true", enable permission checking in HDFS. If "false", permission checking is turned off, but all other behavior is unchanged. Switching from one parameter value to the other does not change the mode, owner or group of files or directories.
dfs.permissions.superusergroupsupergroupThe name of the group of super-users.
dfs.block.access.token.enablefalseIf "true", access tokens are used as capabilities for accessing datanodes. If "false", no access tokens are checked on accessing datanodes.
dfs.block.access.key.update.interval600Interval in minutes at which namenode updates its access keys.
dfs.block.access.token.lifetime600The lifetime of access tokens in minutes.
dfs.datanode.data.dirfile://${hadoop.tmp.dir}/dfs/dataDetermines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.
dfs.datanode.data.dir.perm700Permissions for the directories on on the local filesystem where the DFS data node store its blocks. The permissions can either be octal or symbolic.
dfs.replication3Default block replication. The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.
dfs.replication.max512Maximal block replication.
dfs.namenode.replication.min1Minimal block replication.
dfs.blocksize134217728The default block size for new files, in bytes. You can use the following suffix (case insensitive): k(kilo), m(mega), g(giga), t(tera), p(peta), e(exa) to specify the size (such as 128k, 512m, 1g, etc.), Or provide complete size in bytes (such as 134217728 for 128 MB).
dfs.client.block.write.retries3The number of retries for writing blocks to the data nodes, before we signal failure to the application.
dfs.client.block.write.replace-datanode-on-failure.enabletrueIf there is a datanode/network failure in the write pipeline, DFSClient will try to remove the failed datanode from the pipeline and then continue writing with the remaining datanodes. As a result, the number of datanodes in the pipeline is decreased. The feature is to add new datanodes to the pipeline. This is a site-wide property to enable/disable the feature. When the cluster size is extremely small, e.g. 3 nodes or less, cluster administrators may want to set the policy to NEVER in the default configuration file or disable this feature. Otherwise, users may experience an unusually high rate of pipeline failures since it is impossible to find new datanodes for replacement. See also dfs.client.block.write.replace-datanode-on-failure.policy
dfs.client.block.write.replace-datanode-on-failure.policyDEFAULTThis property is used only if the value of dfs.client.block.write.replace-datanode-on-failure.enable is true. ALWAYS: always add a new datanode when an existing datanode is removed. NEVER: never add a new datanode. DEFAULT: Let r be the replication number. Let n be the number of existing datanodes. Add a new datanode only if r is greater than or equal to 3 and either (1) floor(r/2) is greater than or equal to n; or (2) r is greater than n and the block is hflushed/appended.
dfs.blockreport.intervalMsec21600000Determines block reporting interval in milliseconds.
dfs.blockreport.initialDelay0Delay for first block report in seconds.
dfs.datanode.directoryscan.interval21600Interval in seconds for Datanode to scan data directories and reconcile the difference between blocks in memory and on the disk.
dfs.datanode.directoryscan.threads1How many threads should the threadpool used to compile reports for volumes in parallel have.
dfs.heartbeat.interval3Determines datanode heartbeat interval in seconds.
dfs.namenode.handler.count10The number of server threads for the namenode.
dfs.namenode.safemode.threshold-pct0.999fSpecifies the percentage of blocks that should satisfy the minimal replication requirement defined by dfs.namenode.replication.min. Values less than or equal to 0 mean not to wait for any particular percentage of blocks before exiting safemode. Values greater than 1 will make safe mode permanent.
dfs.namenode.safemode.min.datanodes0Specifies the number of datanodes that must be considered alive before the name node exits safemode. Values less than or equal to 0 mean not to take the number of live datanodes into account when deciding whether to remain in safe mode during startup. Values greater than the number of datanodes in the cluster will make safe mode permanent.
dfs.namenode.safemode.extension30000Determines extension of safe mode in milliseconds after the threshold level is reached.
dfs.datanode.balance.bandwidthPerSec1048576Specifies the maximum amount of bandwidth that each datanode can utilize for the balancing purpose in term of the number of bytes per second.
dfs.hosts Names a file that contains a list of hosts that are permitted to connect to the namenode. The full pathname of the file must be specified. If the value is empty, all hosts are permitted.
dfs.hosts.exclude Names a file that contains a list of hosts that are not permitted to connect to the namenode. The full pathname of the file must be specified. If the value is empty, no hosts are excluded.
dfs.namenode.max.objects0The maximum number of files, directories and blocks dfs supports. A value of zero indicates no limit to the number of objects that dfs supports.
dfs.namenode.decommission.interval30Namenode periodicity in seconds to check if decommission is complete.
dfs.namenode.decommission.nodes.per.interval5The number of nodes namenode checks if decommission is complete in each dfs.namenode.decommission.interval.
dfs.namenode.replication.interval3The periodicity in seconds with which the namenode computes repliaction work for datanodes.
dfs.namenode.accesstime.precision3600000The access time for HDFS file is precise upto this value. The default value is 1 hour. Setting a value of 0 disables access times for HDFS.
dfs.datanode.plugins Comma-separated list of datanode plug-ins to be activated.
dfs.namenode.plugins Comma-separated list of namenode plug-ins to be activated.
dfs.stream-buffer-size4096The size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.
dfs.bytes-per-checksum512The number of bytes per checksum. Must not be larger than dfs.stream-buffer-size
dfs.client-write-packet-size65536Packet size for clients to write
dfs.client.write.exclude.nodes.cache.expiry.interval.millis600000The maximum period to keep a DN in the excluded nodes list at a client. After this period, in milliseconds, the previously excluded node(s) will be removed automatically from the cache and will be considered good for block allocations again. Useful to lower or raise in situations where you keep a file open for very long periods (such as a Write-Ahead-Log (WAL) file) to make the writer tolerant to cluster maintenance restarts. Defaults to 10 minutes.
dfs.namenode.checkpoint.dirfile://${hadoop.tmp.dir}/dfs/namesecondaryDetermines where on the local filesystem the DFS secondary name node should store the temporary images to merge. If this is a comma-delimited list of directories then the image is replicated in all of the directories for redundancy.
dfs.namenode.checkpoint.edits.dir${dfs.namenode.checkpoint.dir}Determines where on the local filesystem the DFS secondary name node should store the temporary edits to merge. If this is a comma-delimited list of directoires then teh edits is replicated in all of the directoires for redundancy. Default value is same as dfs.namenode.checkpoint.dir
dfs.namenode.checkpoint.period3600The number of seconds between two periodic checkpoints.
dfs.namenode.checkpoint.txns1000000The Secondary NameNode or CheckpointNode will create a checkpoint of the namespace every 'dfs.namenode.checkpoint.txns' transactions, regardless of whether 'dfs.namenode.checkpoint.period' has expired.
dfs.namenode.checkpoint.check.period60The SecondaryNameNode and CheckpointNode will poll the NameNode every 'dfs.namenode.checkpoint.check.period' seconds to query the number of uncheckpointed transactions.
dfs.namenode.checkpoint.max-retries3The SecondaryNameNode retries failed checkpointing. If the failure occurs while loading fsimage or replaying edits, the number of retries is limited by this variable.
dfs.namenode.num.checkpoints.retained2The number of image checkpoint files that will be retained by the NameNode and Secondary NameNode in their storage directories. All edit logs necessary to recover an up-to-date namespace from the oldest retained checkpoint will also be retained.
dfs.namenode.num.extra.edits.retained1000000The number of extra transactions which should be retained beyond what is minimally necessary for a NN restart. This can be useful for audit purposes or for an HA setup where a remote Standby Node may have been offline for some time and need to have a longer backlog of retained edits in order to start again. Typically each edit is on the order of a few hundred bytes, so the default of 1 million edits should be on the order of hundreds of MBs or low GBs. NOTE: Fewer extra edits may be retained than value specified for this setting if doing so would mean that more segments would be retained than the number configured by dfs.namenode.max.extra.edits.segments.retained.
dfs.namenode.max.extra.edits.segments.retained10000The maximum number of extra edit log segments which should be retained beyond what is minimally necessary for a NN restart. When used in conjunction with dfs.namenode.num.extra.edits.retained, this configuration property serves to cap the number of extra edits files to a reasonable value.
dfs.namenode.delegation.key.update-interval86400000The update interval for master key for delegation tokens in the namenode in milliseconds.
dfs.namenode.delegation.token.max-lifetime604800000The maximum lifetime in milliseconds for which a delegation token is valid.
dfs.namenode.delegation.token.renew-interval86400000The renewal interval for delegation token in milliseconds.
dfs.datanode.failed.volumes.tolerated0The number of volumes that are allowed to fail before a datanode stops offering service. By default any volume failure will cause a datanode to shutdown.
dfs.image.compressfalseShould the dfs image be compressed?
dfs.image.compression.codecorg.apache.hadoop.io.compress.DefaultCodecIf the dfs image is compressed, how should they be compressed? This has to be a codec defined in io.compression.codecs.
dfs.image.transfer.timeout600000Timeout for image transfer in milliseconds. This timeout and the related dfs.image.transfer.bandwidthPerSec parameter should be configured such that normal image transfer can complete within the timeout. This timeout prevents client hangs when the sender fails during image transfer, which is particularly important during checkpointing. Note that this timeout applies to the entirety of image transfer, and is not a socket timeout.
dfs.image.transfer.bandwidthPerSec0Maximum bandwidth used for image transfer in bytes per second. This can help keep normal namenode operations responsive during checkpointing. The maximum bandwidth and timeout in dfs.image.transfer.timeout should be set such that normal image transfers can complete successfully. A default value of 0 indicates that throttling is disabled.
dfs.namenode.support.allow.formattrueDoes HDFS namenode allow itself to be formatted? You may consider setting this to false for any production cluster, to avoid any possibility of formatting a running DFS.
dfs.datanode.max.transfer.threads4096Specifies the maximum number of threads to use for transferring data in and out of the DN.
dfs.datanode.readahead.bytes4193404While reading block files, if the Hadoop native libraries are available, the datanode can use the posix_fadvise system call to explicitly page data into the operating system buffer cache ahead of the current reader's position. This can improve performance especially when disks are highly contended. This configuration specifies the number of bytes ahead of the current read position which the datanode will attempt to read ahead. This feature may be disabled by configuring this property to 0. If the native libraries are not available, this configuration has no effect.
dfs.datanode.drop.cache.behind.readsfalseIn some workloads, the data read from HDFS is known to be significantly large enough that it is unlikely to be useful to cache it in the operating system buffer cache. In this case, the DataNode may be configured to automatically purge all data from the buffer cache after it is delivered to the client. This behavior is automatically disabled for workloads which read only short sections of a block (e.g HBase random-IO workloads). This may improve performance for some workloads by freeing buffer cache spage usage for more cacheable data. If the Hadoop native libraries are not available, this configuration has no effect.
dfs.datanode.drop.cache.behind.writesfalseIn some workloads, the data written to HDFS is known to be significantly large enough that it is unlikely to be useful to cache it in the operating system buffer cache. In this case, the DataNode may be configured to automatically purge all data from the buffer cache after it is written to disk. This may improve performance for some workloads by freeing buffer cache spage usage for more cacheable data. If the Hadoop native libraries are not available, this configuration has no effect.
dfs.datanode.sync.behind.writesfalseIf this configuration is enabled, the datanode will instruct the operating system to enqueue all written data to the disk immediately after it is written. This differs from the usual OS policy which may wait for up to 30 seconds before triggering writeback. This may improve performance for some workloads by smoothing the IO profile for data written to disk. If the Hadoop native libraries are not available, this configuration has no effect.
dfs.client.failover.max.attempts15Expert only. The number of client failover attempts that should be made before the failover is considered failed.
dfs.client.failover.sleep.base.millis500Expert only. The time to wait, in milliseconds, between failover attempts increases exponentially as a function of the number of attempts made so far, with a random factor of +/- 50%. This option specifies the base value used in the failover calculation. The first failover will retry immediately. The 2nd failover attempt will delay at least dfs.client.failover.sleep.base.millis milliseconds. And so on.
dfs.client.failover.sleep.max.millis15000Expert only. The time to wait, in milliseconds, between failover attempts increases exponentially as a function of the number of attempts made so far, with a random factor of +/- 50%. This option specifies the maximum value to wait between failovers. Specifically, the time between two failover attempts will not exceed +/- 50% of dfs.client.failover.sleep.max.millis milliseconds.
dfs.client.failover.connection.retries0Expert only. Indicates the number of retries a failover IPC client will make to establish a server connection.
dfs.client.failover.connection.retries.on.timeouts0Expert only. The number of retry attempts a failover IPC client will make on socket timeout when establishing a server connection.
dfs.nameservices Comma-separated list of nameservices.
dfs.nameservice.id The ID of this nameservice. If the nameservice ID is not configured or more than one nameservice is configured for dfs.nameservices it is determined automatically by matching the local node's address with the configured address.
dfs.ha.namenodes.EXAMPLENAMESERVICE The prefix for a given nameservice, contains a comma-separated list of namenodes for a given nameservice (eg EXAMPLENAMESERVICE).
dfs.ha.namenode.id The ID of this namenode. If the namenode ID is not configured it is determined automatically by matching the local node's address with the configured address.
dfs.ha.log-roll.period120How often, in seconds, the StandbyNode should ask the active to roll edit logs. Since the StandbyNode only reads from finalized log segments, the StandbyNode will only be as up-to-date as how often the logs are rolled. Note that failover triggers a log roll so the StandbyNode will be up to date before it becomes active.
dfs.ha.tail-edits.period60How often, in seconds, the StandbyNode should check for new finalized log segments in the shared edits log.
dfs.ha.automatic-failover.enabledfalseWhether automatic failover is enabled. See the HDFS High Availability documentation for details on automatic HA configuration.
dfs.support.appendtrueDoes HDFS allow appends to files?
dfs.client.use.datanode.hostnamefalseWhether clients should use datanode hostnames when connecting to datanodes.
dfs.datanode.use.datanode.hostnamefalseWhether datanodes should use datanode hostnames when connecting to other datanodes for data transfer.
dfs.client.local.interfaces A comma separated list of network interface names to use for data transfer between the client and datanodes. When creating a connection to read from or write to a datanode, the client chooses one of the specified interfaces at random and binds its socket to the IP of that interface. Individual names may be specified as either an interface name (eg "eth0"), a subinterface name (eg "eth0:0"), or an IP address (which may be specified using CIDR notation to match a range of IPs).
dfs.namenode.kerberos.internal.spnego.principal${dfs.web.authentication.kerberos.principal} 
dfs.secondary.namenode.kerberos.internal.spnego.principal${dfs.web.authentication.kerberos.principal} 
dfs.namenode.avoid.read.stale.datanodefalseIndicate whether or not to avoid reading from "stale" datanodes whose heartbeat messages have not been received by the namenode for more than a specified time interval. Stale datanodes will be moved to the end of the node list returned for reading. See dfs.namenode.avoid.write.stale.datanode for a similar setting for writes.
dfs.namenode.avoid.write.stale.datanodefalseIndicate whether or not to avoid writing to "stale" datanodes whose heartbeat messages have not been received by the namenode for more than a specified time interval. Writes will avoid using stale datanodes unless more than a configured ratio (dfs.namenode.write.stale.datanode.ratio) of datanodes are marked as stale. See dfs.namenode.avoid.read.stale.datanode for a similar setting for reads.
dfs.namenode.stale.datanode.interval30000Default time interval for marking a datanode as "stale", i.e., if the namenode has not received heartbeat msg from a datanode for more than this time interval, the datanode will be marked and treated as "stale" by default. The stale interval cannot be too small since otherwise this may cause too frequent change of stale states. We thus set a minimum stale interval value (the default value is 3 times of heartbeat interval) and guarantee that the stale interval cannot be less than the minimum value. A stale data node is avoided during lease/block recovery. It can be conditionally avoided for reads (see dfs.namenode.avoid.read.stale.datanode) and for writes (see dfs.namenode.avoid.write.stale.datanode).
dfs.namenode.write.stale.datanode.ratio0.5fWhen the ratio of number stale datanodes to total datanodes marked is greater than this ratio, stop avoiding writing to stale nodes so as to prevent causing hotspots.
dfs.namenode.invalidate.work.pct.per.iteration0.32f*Note*: Advanced property. Change with caution. This determines the percentage amount of block invalidations (deletes) to do over a single DN heartbeat deletion command. The final deletion count is determined by applying this percentage to the number of live nodes in the system. The resultant number is the number of blocks from the deletion list chosen for proper invalidation over a single heartbeat of a single DN. Value should be a positive, non-zero percentage in float notation (X.Yf), with 1.0f meaning 100%.
dfs.namenode.replication.work.multiplier.per.iteration2*Note*: Advanced property. Change with caution. This determines the total amount of block transfers to begin in parallel at a DN, for replication, when such a command list is being sent over a DN heartbeat by the NN. The actual number is obtained by multiplying this multiplier with the total number of live nodes in the cluster. The result number is the number of blocks to begin transfers immediately for, per DN heartbeat. This number can be any positive, non-zero integer.
dfs.webhdfs.enabledfalseEnable WebHDFS (REST API) in Namenodes and Datanodes.
hadoop.fuse.connection.timeout300The minimum number of seconds that we'll cache libhdfs connection objects in fuse_dfs. Lower values will result in lower memory consumption; higher values may speed up access by avoiding the overhead of creating new connection objects.
hadoop.fuse.timer.period5The number of seconds between cache expiry checks in fuse_dfs. Lower values will result in fuse_dfs noticing changes to Kerberos ticket caches more quickly.
dfs.metrics.percentiles.intervals Comma-delimited set of integers denoting the desired rollover intervals (in seconds) for percentile latency metrics on the Namenode and Datanode. By default, percentile latency metrics are disabled.
dfs.encrypt.data.transferfalseWhether or not actual block data that is read/written from/to HDFS should be encrypted on the wire. This only needs to be set on the NN and DNs, clients will deduce this automatically.
dfs.encrypt.data.transfer.algorithm This value may be set to either "3des" or "rc4". If nothing is set, then the configured JCE default on the system is used (usually 3DES.) It is widely believed that 3DES is more cryptographically secure, but RC4 is substantially faster.
dfs.datanode.hdfs-blocks-metadata.enabledfalseBoolean which enables backend datanode-side support for the experimental DistributedFileSystem#getFileVBlockStorageLocations API.
dfs.client.file-block-storage-locations.num-threads10Number of threads used for making parallel RPCs in DistributedFileSystem#getFileBlockStorageLocations().
dfs.client.file-block-storage-locations.timeout60Timeout (in seconds) for the parallel RPCs made in DistributedFileSystem#getFileBlockStorageLocations().
dfs.journalnode.rpc-address0.0.0.0:8485The JournalNode RPC server address and port.
dfs.journalnode.http-address0.0.0.0:8480The address and port the JournalNode web UI listens on. If the port is 0 then the server will start on a free port.
dfs.namenode.audit.loggersdefaultList of classes implementing audit loggers that will receive audit events. These should be implementations of org.apache.hadoop.hdfs.server.namenode.AuditLogger. The special value "default" can be used to reference the default audit logger, which uses the configured log system. Installing custom audit loggers may affect the performance and stability of the NameNode. Refer to the custom logger's documentation for more details.
dfs.domain.socket.path Optional. This is a path to a UNIX domain socket that will be used for communication between the DataNode and local HDFS clients. If the string "_PORT" is present in this path, it will be replaced by the TCP port of the DataNode.
dfs.datanode.available-space-volume-choosing-policy.balanced-space-threshold10737418240Only used when the dfs.datanode.fsdataset.volume.choosing.policy is set to org.apache.hadoop.hdfs.server.datanode.fsdataset.AvailableSpaceVolumeChoosingPolicy. This setting controls how much DN volumes are allowed to differ in terms of bytes of free disk space before they are considered imbalanced. If the free space of all the volumes are within this range of each other, the volumes will be considered balanced and block assignments will be done on a pure round robin basis.
dfs.datanode.available-space-volume-choosing-policy.balanced-space-preference-fraction0.75fOnly used when the dfs.datanode.fsdataset.volume.choosing.policy is set to org.apache.hadoop.hdfs.server.datanode.fsdataset.AvailableSpaceVolumeChoosingPolicy. This setting controls what percentage of new block allocations will be sent to volumes with more available disk space than others. This setting should be in the range 0.0 - 1.0, though in practice 0.5 - 1.0, since there should be no reason to prefer that volumes with less available disk space receive more block allocations.
dfs.namenode.edits.noeditlogchannelflushfalseSpecifies whether to flush edit log file channel. When set, expensive FileChannel#force calls are skipped and synchronous disk writes are enabled instead by opening the edit log file with RandomAccessFile("rws") flags. This can significantly improve the performance of edit log writes on the Windows platform. Note that the behavior of the "rws" flags is platform and hardware specific and might not provide the same level of guarantees as FileChannel#force. For example, the write will skip the disk-cache on SAS and SCSI devices while it might not on SATA devices. This is an expert level setting, change with caution.
dfs.client.cache.drop.behind.writes Just like dfs.datanode.drop.cache.behind.writes, this setting causes the page cache to be dropped behind HDFS writes, potentially freeing up more memory for other uses. Unlike dfs.datanode.drop.cache.behind.writes, this is a client-side setting rather than a setting for the entire datanode. If present, this setting will override the DataNode default. If the native libraries are not available to the DataNode, this configuration has no effect.
dfs.client.cache.drop.behind.reads Just like dfs.datanode.drop.cache.behind.reads, this setting causes the page cache to be dropped behind HDFS reads, potentially freeing up more memory for other uses. Unlike dfs.datanode.drop.cache.behind.reads, this is a client-side setting rather than a setting for the entire datanode. If present, this setting will override the DataNode default. If the native libraries are not available to the DataNode, this configuration has no effect.
dfs.client.cache.readahead Just like dfs.datanode.readahead.bytes, this setting causes the datanode to read ahead in the block file using posix_fadvise, potentially decreasing I/O wait times. Unlike dfs.datanode.readahead.bytes, this is a client-side setting rather than a setting for the entire datanode. If present, this setting will override the DataNode default. If the native libraries are not available to the DataNode, this configuration has no effect.
dfs.namenode.enable.retrycachetrueThis enables the retry cache on the namenode. Namenode tracks for non-idempotent requests the corresponding response. If a client retries the request, the response from the retry cache is sent. Such operations are tagged with annotation @AtMostOnce in namenode protocols. It is recommended that this flag be set to true. Setting it to false, will result in clients getting failure responses to retried request. This flag must be enabled in HA setup for transparent fail-overs. The entries in the cache have expiration time configurable using dfs.namenode.retrycache.expirytime.millis.
dfs.namenode.retrycache.expirytime.millis600000The time for which retry cache entries are retained.
dfs.namenode.retrycache.heap.percent0.03fThis parameter configures the heap size allocated for retry cache (excluding the response cached). This corresponds to approximately 4096 entries for every 64MB of namenode process java heap size. Assuming retry cache entry expiration time (configured using dfs.namenode.retrycache.expirytime.millis) of 10 minutes, this enables retry cache to support 7 operations per second sustained for 10 minutes. As the heap size is increased, the operation rate linearly increases.

mapred-site.xml

引用:http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

namevaluedescription
mapreduce.jobtracker.jobhistory.location If job tracker is static the history files are stored in this single well known place. If No value is set here, by default, it is in the local file system at ${hadoop.log.dir}/history.
mapreduce.jobtracker.jobhistory.task.numberprogresssplits12Every task attempt progresses from 0.0 to 1.0 [unless it fails or is killed]. We record, for each task attempt, certain statistics over each twelfth of the progress range. You can change the number of intervals we divide the entire range of progress into by setting this property. Higher values give more precision to the recorded data, but costs more memory in the job tracker at runtime. Each increment in this attribute costs 16 bytes per running task.
mapreduce.job.userhistorylocation User can specify a location to store the history files of a particular job. If nothing is specified, the logs are stored in output directory. The files are stored in "_logs/history/" in the directory. User can stop logging by giving the value "none".
mapreduce.jobtracker.jobhistory.completed.location The completed job history files are stored at this single well known location. If nothing is specified, the files are stored at ${mapreduce.jobtracker.jobhistory.location}/done.
mapreduce.job.committer.setup.cleanup.neededtruetrue, if job needs job-setup and job-cleanup. false, otherwise
mapreduce.task.io.sort.factor10The number of streams to merge at once while sorting files. This determines the number of open file handles.
mapreduce.task.io.sort.mb100The total amount of buffer memory to use while sorting files, in megabytes. By default, gives each merge stream 1MB, which should minimize seeks.
mapreduce.map.sort.spill.percent0.80The soft limit in the serialization buffer. Once reached, a thread will begin to spill the contents to disk in the background. Note that collection will not block if this threshold is exceeded while a spill is already in progress, so spills may be larger than this threshold when it is set to less than .5
mapreduce.jobtracker.addresslocalThe host and port that the MapReduce job tracker runs at. If "local", then jobs are run in-process as a single map and reduce task.
mapreduce.local.clientfactory.class.nameorg.apache.hadoop.mapred.LocalClientFactoryThis the client factory that is responsible for creating local job runner client
mapreduce.jobtracker.http.address0.0.0.0:50030The job tracker http server address and port the server will listen on. If the port is 0 then the server will start on a free port.
mapreduce.jobtracker.handler.count10The number of server threads for the JobTracker. This should be roughly 4% of the number of tasktracker nodes.
mapreduce.tasktracker.report.address127.0.0.1:0The interface and port that task tracker server listens on. Since it is only connected to by the tasks, it uses the local interface. EXPERT ONLY. Should only be changed if your host does not have the loopback interface.
mapreduce.cluster.local.dir${hadoop.tmp.dir}/mapred/localThe local directory where MapReduce stores intermediate data files. May be a comma-separated list of directories on different devices in order to spread disk i/o. Directories that do not exist are ignored.
mapreduce.jobtracker.system.dir${hadoop.tmp.dir}/mapred/systemThe directory where MapReduce stores control files.
mapreduce.jobtracker.staging.root.dir${hadoop.tmp.dir}/mapred/stagingThe root of the staging area for users' job files In practice, this should be the directory where users' home directories are located (usually /user)
mapreduce.cluster.temp.dir${hadoop.tmp.dir}/mapred/tempA shared directory for temporary files.
mapreduce.tasktracker.local.dir.minspacestart0If the space in mapreduce.cluster.local.dir drops under this, do not ask for more tasks. Value in bytes.
mapreduce.tasktracker.local.dir.minspacekill0If the space in mapreduce.cluster.local.dir drops under this, do not ask more tasks until all the current ones have finished and cleaned up. Also, to save the rest of the tasks we have running, kill one of them, to clean up some space. Start with the reduce tasks, then go with the ones that have finished the least. Value in bytes.
mapreduce.jobtracker.expire.trackers.interval600000Expert: The time-interval, in miliseconds, after which a tasktracker is declared 'lost' if it doesn't send heartbeats.
mapreduce.tasktracker.instrumentationorg.apache.hadoop.mapred.TaskTrackerMetricsInstExpert: The instrumentation class to associate with each TaskTracker.
mapreduce.tasktracker.resourcecalculatorplugin Name of the class whose instance will be used to query resource information on the tasktracker. The class must be an instance of org.apache.hadoop.util.ResourceCalculatorPlugin. If the value is null, the tasktracker attempts to use a class appropriate to the platform. Currently, the only platform supported is Linux.
mapreduce.tasktracker.taskmemorymanager.monitoringinterval5000The interval, in milliseconds, for which the tasktracker waits between two cycles of monitoring its tasks' memory usage. Used only if tasks' memory management is enabled via mapred.tasktracker.tasks.maxmemory.
mapreduce.tasktracker.tasks.sleeptimebeforesigkill5000The time, in milliseconds, the tasktracker waits for sending a SIGKILL to a task, after it has been sent a SIGTERM. This is currently not used on WINDOWS where tasks are just sent a SIGTERM.
mapreduce.job.maps2The default number of map tasks per job. Ignored when mapreduce.jobtracker.address is "local".
mapreduce.job.reduces1The default number of reduce tasks per job. Typically set to 99% of the cluster's reduce capacity, so that if a node fails the reduces can still be executed in a single wave. Ignored when mapreduce.jobtracker.address is "local".
mapreduce.jobtracker.restart.recoverfalse"true" to enable (job) recovery upon restart, "false" to start afresh
mapreduce.jobtracker.jobhistory.block.size3145728The block size of the job history file. Since the job recovery uses job history, its important to dump job history to disk as soon as possible. Note that this is an expert level parameter. The default value is set to 3 MB.
mapreduce.jobtracker.taskschedulerorg.apache.hadoop.mapred.JobQueueTaskSchedulerThe class responsible for scheduling the tasks.
mapreduce.job.split.metainfo.maxsize10000000The maximum permissible size of the split metainfo file. The JobTracker won't attempt to read split metainfo files bigger than the configured value. No limits if set to -1.
mapreduce.jobtracker.taskscheduler.maxrunningtasks.perjob The maximum number of running tasks for a job before it gets preempted. No limits if undefined.
mapreduce.map.maxattempts4Expert: The maximum number of attempts per map task. In other words, framework will try to execute a map task these many number of times before giving up on it.
mapreduce.reduce.maxattempts4Expert: The maximum number of attempts per reduce task. In other words, framework will try to execute a reduce task these many number of times before giving up on it.
mapreduce.reduce.shuffle.retry-delay.max.ms60000The maximum number of ms the reducer will delay before retrying to download map data.
mapreduce.reduce.shuffle.parallelcopies5The default number of parallel transfers run by reduce during the copy(shuffle) phase.
mapreduce.reduce.shuffle.connect.timeout180000Expert: The maximum amount of time (in milli seconds) reduce task spends in trying to connect to a tasktracker for getting map output.
mapreduce.reduce.shuffle.read.timeout180000Expert: The maximum amount of time (in milli seconds) reduce task waits for map output data to be available for reading after obtaining connection.
mapreduce.task.timeout600000The number of milliseconds before a task will be terminated if it neither reads an input, writes an output, nor updates its status string. A value of 0 disables the timeout.
mapreduce.tasktracker.map.tasks.maximum2The maximum number of map tasks that will be run simultaneously by a task tracker.
mapreduce.tasktracker.reduce.tasks.maximum2The maximum number of reduce tasks that will be run simultaneously by a task tracker.
mapreduce.jobtracker.retiredjobs.cache.size1000The number of retired job status to keep in the cache.
mapreduce.tasktracker.outofband.heartbeatfalseExpert: Set this to true to let the tasktracker send an out-of-band heartbeat on task-completion for better latency.
mapreduce.jobtracker.jobhistory.lru.cache.size5The number of job history files loaded in memory. The jobs are loaded when they are first accessed. The cache is cleared based on LRU.
mapreduce.jobtracker.instrumentationorg.apache.hadoop.mapred.JobTrackerMetricsInstExpert: The instrumentation class to associate with each JobTracker.
mapred.child.java.opts-Xmx200mJava opts for the task tracker child processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID. Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
mapred.child.env User added environment variables for the task tracker child processes. Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit nodemanager's B env variable on Unix. 3) B=%B%;c This is inherit nodemanager's B env variable on Windows.
mapreduce.admin.user.envLD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/nativeExpert: Additional execution environment entries for map and reduce task processes. This is not an additive property. You must preserve the original value if you want your map and reduce tasks to have access to native libraries (compression, etc).
mapreduce.task.tmp.dir./tmpTo set the value of tmp directory for map and reduce tasks. If the value is an absolute path, it is directly assigned. Otherwise, it is prepended with task's working directory. The java tasks are executed with option -Djava.io.tmpdir='the absolute path of the tmp dir'. Pipes and streaming are set with environment variable, TMPDIR='the absolute path of the tmp dir'
mapreduce.map.log.levelINFOThe logging level for the map task. The allowed levels are: OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL.
mapreduce.reduce.log.levelINFOThe logging level for the reduce task. The allowed levels are: OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL.
mapreduce.map.cpu.vcores1The number of virtual cores required for each map task.
mapreduce.reduce.cpu.vcores1The number of virtual cores required for each reduce task.
mapreduce.reduce.merge.inmem.threshold1000The threshold, in terms of the number of files for the in-memory merge process. When we accumulate threshold number of files we initiate the in-memory merge and spill to disk. A value of 0 or less than 0 indicates we want to DON'T have any threshold and instead depend only on the ramfs's memory consumption to trigger the merge.
mapreduce.reduce.shuffle.merge.percent0.66The usage threshold at which an in-memory merge will be initiated, expressed as a percentage of the total memory allocated to storing in-memory map outputs, as defined by mapreduce.reduce.shuffle.input.buffer.percent.
mapreduce.reduce.shuffle.input.buffer.percent0.70The percentage of memory to be allocated from the maximum heap size to storing map outputs during the shuffle.
mapreduce.reduce.input.buffer.percent0.0The percentage of memory- relative to the maximum heap size- to retain map outputs during the reduce. When the shuffle is concluded, any remaining map outputs in memory must consume less than this threshold before the reduce can begin.
mapreduce.reduce.shuffle.memory.limit.percent0.25Expert: Maximum percentage of the in-memory limit that a single shuffle can consume
mapreduce.shuffle.ssl.enabledfalseWhether to use SSL for for the Shuffle HTTP endpoints.
mapreduce.shuffle.ssl.file.buffer.size65536Buffer size for reading spills from file when using SSL.
mapreduce.shuffle.max.connections0Max allowed connections for the shuffle. Set to 0 (zero) to indicate no limit on the number of connections.
mapreduce.reduce.markreset.buffer.percent0.0The percentage of memory -relative to the maximum heap size- to be used for caching values when using the mark-reset functionality.
mapreduce.map.speculativetrueIf true, then multiple instances of some map tasks may be executed in parallel.
mapreduce.reduce.speculativetrueIf true, then multiple instances of some reduce tasks may be executed in parallel.
mapreduce.job.speculative.speculativecap0.1The max percent (0-1) of running tasks that can be speculatively re-executed at any time.
mapreduce.job.map.output.collector.classorg.apache.hadoop.mapred.MapTask$MapOutputBufferIt defines the MapOutputCollector implementation to use.
mapreduce.job.speculative.slowtaskthreshold1.0 
mapreduce.job.speculative.slownodethreshold1.0The number of standard deviations by which a Task Tracker's ave map and reduce progress-rates (finishTime-dispatchTime) must be lower than the average of all successful map/reduce task's for the TT to be considered too slow to give a speculative task to.
mapreduce.job.jvm.numtasks1How many tasks to run per jvm. If set to -1, there is no limit.
mapreduce.job.ubertask.enablefalseWhether to enable the small-jobs "ubertask" optimization, which runs "sufficiently small" jobs sequentially within a single JVM. "Small" is defined by the following maxmaps, maxreduces, and maxbytes settings. Users may override this value.
mapreduce.job.ubertask.maxmaps9Threshold for number of maps, beyond which job is considered too big for the ubertasking optimization. Users may override this value, but only downward.
mapreduce.job.ubertask.maxreduces1Threshold for number of reduces, beyond which job is considered too big for the ubertasking optimization. CURRENTLY THE CODE CANNOT SUPPORT MORE THAN ONE REDUCE and will ignore larger values. (Zero is a valid max, however.) Users may override this value, but only downward.
mapreduce.job.ubertask.maxbytes Threshold for number of input bytes, beyond which job is considered too big for the ubertasking optimization. If no value is specified, dfs.block.size is used as a default. Be sure to specify a default value in mapred-site.xml if the underlying filesystem is not HDFS. Users may override this value, but only downward.
mapreduce.input.fileinputformat.split.minsize0The minimum size chunk that map input should be split into. Note that some file formats may have minimum split sizes that take priority over this setting.
mapreduce.jobtracker.maxtasks.perjob-1The maximum number of tasks for a single job. A value of -1 indicates that there is no maximum.
mapreduce.client.submit.file.replication10The replication level for submitted job files. This should be around the square root of the number of nodes.
mapreduce.tasktracker.dns.interfacedefaultThe name of the Network Interface from which a task tracker should report its IP address.
mapreduce.tasktracker.dns.nameserverdefaultThe host name or IP address of the name server (DNS) which a TaskTracker should use to determine the host name used by the JobTracker for communication and display purposes.
mapreduce.tasktracker.http.threads40The number of worker threads that for the http server. This is used for map output fetching
mapreduce.tasktracker.http.address0.0.0.0:50060The task tracker http server address and port. If the port is 0 then the server will start on a free port.
mapreduce.task.files.preserve.failedtasksfalseShould the files for failed tasks be kept. This should only be used on jobs that are failing, because the storage is never reclaimed. It also prevents the map outputs from being erased from the reduce directory as they are consumed.
mapreduce.output.fileoutputformat.compressfalseShould the job outputs be compressed?
mapreduce.output.fileoutputformat.compress.typeRECORDIf the job outputs are to compressed as SequenceFiles, how should they be compressed? Should be one of NONE, RECORD or BLOCK.
mapreduce.output.fileoutputformat.compress.codecorg.apache.hadoop.io.compress.DefaultCodecIf the job outputs are compressed, how should they be compressed?
mapreduce.map.output.compressfalseShould the outputs of the maps be compressed before being sent across the network. Uses SequenceFile compression.
mapreduce.map.output.compress.codecorg.apache.hadoop.io.compress.DefaultCodecIf the map outputs are compressed, how should they be compressed?
map.sort.classorg.apache.hadoop.util.QuickSortThe default sort class for sorting keys.
mapreduce.task.userlog.limit.kb0The maximum size of user-logs of each task in KB. 0 disables the cap.
mapreduce.job.userlog.retain.hours24The maximum time, in hours, for which the user-logs are to be retained after the job completion.
mapreduce.jobtracker.hosts.filename Names a file that contains the list of nodes that may connect to the jobtracker. If the value is empty, all hosts are permitted.
mapreduce.jobtracker.hosts.exclude.filename Names a file that contains the list of hosts that should be excluded by the jobtracker. If the value is empty, no hosts are excluded.
mapreduce.jobtracker.heartbeats.in.second100Expert: Approximate number of heart-beats that could arrive at JobTracker in a second. Assuming each RPC can be processed in 10msec, the default value is made 100 RPCs in a second.
mapreduce.jobtracker.tasktracker.maxblacklists4The number of blacklists for a taskTracker by various jobs after which the task tracker could be blacklisted across all jobs. The tracker will be given a tasks later (after a day). The tracker will become a healthy tracker after a restart.
mapreduce.job.maxtaskfailures.per.tracker3The number of task-failures on a tasktracker of a given job after which new tasks of that job aren't assigned to it. It MUST be less than mapreduce.map.maxattempts and mapreduce.reduce.maxattempts otherwise the failed task will never be tried on a different node.
mapreduce.client.output.filterFAILEDThe filter for controlling the output of the task's userlogs sent to the console of the JobClient. The permissible options are: NONE, KILLED, FAILED, SUCCEEDED and ALL.
mapreduce.client.completion.pollinterval5000The interval (in milliseconds) between which the JobClient polls the JobTracker for updates about job status. You may want to set this to a lower value to make tests run faster on a single node system. Adjusting this value in production may lead to unwanted client-server traffic.
mapreduce.client.progressmonitor.pollinterval1000The interval (in milliseconds) between which the JobClient reports status to the console and checks for job completion. You may want to set this to a lower value to make tests run faster on a single node system. Adjusting this value in production may lead to unwanted client-server traffic.
mapreduce.jobtracker.persist.jobstatus.activetrueIndicates if persistency of job status information is active or not.
mapreduce.jobtracker.persist.jobstatus.hours1The number of hours job status information is persisted in DFS. The job status information will be available after it drops of the memory queue and between jobtracker restarts. With a zero value the job status information is not persisted at all in DFS.
mapreduce.jobtracker.persist.jobstatus.dir/jobtracker/jobsInfoThe directory where the job status information is persisted in a file system to be available after it drops of the memory queue and between jobtracker restarts.
mapreduce.task.profilefalseTo set whether the system should collect profiler information for some of the tasks in this job? The information is stored in the user log directory. The value is "true" if task profiling is enabled.
mapreduce.task.profile.maps0-2To set the ranges of map tasks to profile. mapreduce.task.profile has to be set to true for the value to be accounted.
mapreduce.task.profile.reduces0-2To set the ranges of reduce tasks to profile. mapreduce.task.profile has to be set to true for the value to be accounted.
mapreduce.task.skip.start.attempts2The number of Task attempts AFTER which skip mode will be kicked off. When skip mode is kicked off, the tasks reports the range of records which it will process next, to the TaskTracker. So that on failures, TT knows which ones are possibly the bad records. On further executions, those are skipped.
mapreduce.map.skip.proc.count.autoincrtrueThe flag which if set to true, SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS is incremented by MapRunner after invoking the map function. This value must be set to false for applications which process the records asynchronously or buffer the input records. For example streaming. In such cases applications should increment this counter on their own.
mapreduce.reduce.skip.proc.count.autoincrtrueThe flag which if set to true, SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS is incremented by framework after invoking the reduce function. This value must be set to false for applications which process the records asynchronously or buffer the input records. For example streaming. In such cases applications should increment this counter on their own.
mapreduce.job.skip.outdir If no value is specified here, the skipped records are written to the output directory at _logs/skip. User can stop writing skipped records by giving the value "none".
mapreduce.map.skip.maxrecords0The number of acceptable skip records surrounding the bad record PER bad record in mapper. The number includes the bad record as well. To turn the feature of detection/skipping of bad records off, set the value to 0. The framework tries to narrow down the skipped range by retrying until this threshold is met OR all attempts get exhausted for this task. Set the value to Long.MAX_VALUE to indicate that framework need not try to narrow down. Whatever records(depends on application) get skipped are acceptable.
mapreduce.reduce.skip.maxgroups0The number of acceptable skip groups surrounding the bad group PER bad group in reducer. The number includes the bad group as well. To turn the feature of detection/skipping of bad groups off, set the value to 0. The framework tries to narrow down the skipped range by retrying until this threshold is met OR all attempts get exhausted for this task. Set the value to Long.MAX_VALUE to indicate that framework need not try to narrow down. Whatever groups(depends on application) get skipped are acceptable.
mapreduce.ifile.readaheadtrueConfiguration key to enable/disable IFile readahead.
mapreduce.ifile.readahead.bytes4194304Configuration key to set the IFile readahead length in bytes.
mapreduce.jobtracker.taskcache.levels2This is the max level of the task cache. For example, if the level is 2, the tasks cached are at the host level and at the rack level.
mapreduce.job.queuenamedefaultQueue to which a job is submitted. This must match one of the queues defined in mapred-queues.xml for the system. Also, the ACL setup for the queue must allow the current user to submit a job to the queue. Before specifying a queue, ensure that the system is configured with the queue, and access is allowed for submitting jobs to the queue.
mapreduce.cluster.acls.enabledfalseSpecifies whether ACLs should be checked for authorization of users for doing various queue and job level operations. ACLs are disabled by default. If enabled, access control checks are made by JobTracker and TaskTracker when requests are made by users for queue operations like submit job to a queue and kill a job in the queue and job operations like viewing the job-details (See mapreduce.job.acl-view-job) or for modifying the job (See mapreduce.job.acl-modify-job) using Map/Reduce APIs, RPCs or via the console and web user interfaces. For enabling this flag(mapreduce.cluster.acls.enabled), this is to be set to true in mapred-site.xml on JobTracker node and on all TaskTracker nodes.
mapreduce.job.acl-modify-job Job specific access-control list for 'modifying' the job. It is only used if authorization is enabled in Map/Reduce by setting the configuration property mapreduce.cluster.acls.enabled to true. This specifies the list of users and/or groups who can do modification operations on the job. For specifying a list of users and groups the format to use is "user1,user2 group1,group". If set to '*', it allows all users/groups to modify this job. If set to ' '(i.e. space), it allows none. This configuration is used to guard all the modifications with respect to this job and takes care of all the following operations: o killing this job o killing a task of this job, failing a task of this job o setting the priority of this job Each of these operations are also protected by the per-queue level ACL "acl-administer-jobs" configured via mapred-queues.xml. So a caller should have the authorization to satisfy either the queue-level ACL or the job-level ACL. Irrespective of this ACL configuration, (a) job-owner, (b) the user who started the cluster, (c) members of an admin configured supergroup configured via mapreduce.cluster.permissions.supergroup and (d) queue administrators of the queue to which this job was submitted to configured via acl-administer-jobs for the specific queue in mapred-queues.xml can do all the modification operations on a job. By default, nobody else besides job-owner, the user who started the cluster, members of supergroup and queue administrators can perform modification operations on a job.
mapreduce.job.acl-view-job Job specific access-control list for 'viewing' the job. It is only used if authorization is enabled in Map/Reduce by setting the configuration property mapreduce.cluster.acls.enabled to true. This specifies the list of users and/or groups who can view private details about the job. For specifying a list of users and groups the format to use is "user1,user2 group1,group". If set to '*', it allows all users/groups to modify this job. If set to ' '(i.e. space), it allows none. This configuration is used to guard some of the job-views and at present only protects APIs that can return possibly sensitive information of the job-owner like o job-level counters o task-level counters o tasks' diagnostic information o task-logs displayed on the TaskTracker web-UI and o job.xml showed by the JobTracker's web-UI Every other piece of information of jobs is still accessible by any other user, for e.g., JobStatus, JobProfile, list of jobs in the queue, etc. Irrespective of this ACL configuration, (a) job-owner, (b) the user who started the cluster, (c) members of an admin configured supergroup configured via mapreduce.cluster.permissions.supergroup and (d) queue administrators of the queue to which this job was submitted to configured via acl-administer-jobs for the specific queue in mapred-queues.xml can do all the view operations on a job. By default, nobody else besides job-owner, the user who started the cluster, memebers of supergroup and queue administrators can perform view operations on a job.
mapreduce.tasktracker.indexcache.mb10The maximum memory that a task tracker allows for the index cache that is used when serving map outputs to reducers.
mapreduce.job.token.tracking.ids.enabledfalseWhether to write tracking ids of tokens to job-conf. When true, the configuration property "mapreduce.job.token.tracking.ids" is set to the token-tracking-ids of the job
mapreduce.job.token.tracking.ids When mapreduce.job.token.tracking.ids.enabled is set to true, this is set by the framework to the token-tracking-ids used by the job.
mapreduce.task.merge.progress.records10000The number of records to process during merge before sending a progress notification to the TaskTracker.
mapreduce.job.reduce.slowstart.completedmaps0.05Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job.
mapreduce.job.complete.cancel.delegation.tokenstrueif false - do not unregister/cancel delegation tokens from renewal, because same tokens may be used by spawned jobs
mapreduce.tasktracker.taskcontrollerorg.apache.hadoop.mapred.DefaultTaskControllerTaskController which is used to launch and manage task execution
mapreduce.tasktracker.group Expert: Group to which TaskTracker belongs. If LinuxTaskController is configured via mapreduce.tasktracker.taskcontroller, the group owner of the task-controller binary should be same as this group.
mapreduce.shuffle.port13562Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.
mapreduce.job.reduce.shuffle.consumer.plugin.classorg.apache.hadoop.mapreduce.task.reduce.ShuffleName of the class whose instance will be used to send shuffle requests by reducetasks of this job. The class must be an instance of org.apache.hadoop.mapred.ShuffleConsumerPlugin.
mapreduce.tasktracker.healthchecker.script.path Absolute path to the script which is periodicallyrun by the node health monitoring service to determine if the node is healthy or not. If the value of this key is empty or the file does not exist in the location configured here, the node health monitoring service is not started.
mapreduce.tasktracker.healthchecker.interval60000Frequency of the node health script to be run, in milliseconds
mapreduce.tasktracker.healthchecker.script.timeout600000Time after node health script should be killed if unresponsive and considered that the script has failed.
mapreduce.tasktracker.healthchecker.script.args List of arguments which are to be passed to node health script when it is being launched comma seperated.
mapreduce.job.counters.limit120Limit on the number of user counters allowed per job.
mapreduce.framework.namelocalThe runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.
yarn.app.mapreduce.am.staging-dir/tmp/hadoop-yarn/stagingThe staging dir used while submitting jobs.
mapreduce.am.max-attempts2The maximum number of application attempts. It is a application-specific setting. It should not be larger than the global number set by resourcemanager. Otherwise, it will be override. The default number is set to 2, to allow at least one retry for AM.
mapreduce.job.end-notification.url Indicates url which will be called on completion of job to inform end status of job. User can give at most 2 variables with URI : $jobId and $jobStatus. If they are present in URI, then they will be replaced by their respective values.
mapreduce.job.end-notification.retry.attempts0The number of times the submitter of the job wants to retry job end notification if it fails. This is capped by mapreduce.job.end-notification.max.attempts
mapreduce.job.end-notification.retry.interval1000The number of milliseconds the submitter of the job wants to wait before job end notification is retried if it fails. This is capped by mapreduce.job.end-notification.max.retry.interval
mapreduce.job.end-notification.max.attempts5The maximum number of times a URL will be read for providing job end notification. Cluster administrators can set this to limit how long after end of a job, the Application Master waits before exiting. Must be marked as final to prevent users from overriding this.
mapreduce.job.end-notification.max.retry.interval5000The maximum amount of time (in milliseconds) to wait before retrying job end notification. Cluster administrators can set this to limit how long the Application Master waits before exiting. Must be marked as final to prevent users from overriding this.
yarn.app.mapreduce.am.env User added environment variables for the MR App Master processes. Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit tasktracker's B env variable.
yarn.app.mapreduce.am.admin.user.env Environment variables for the MR App Master processes for admin purposes. These values are set first and can be overridden by the user env (yarn.app.mapreduce.am.env) Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit app master's B env variable.
yarn.app.mapreduce.am.command-opts-Xmx1024mJava opts for the MR App Master processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID. Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
yarn.app.mapreduce.am.admin-command-opts Java opts for the MR App Master processes for admin purposes. It will appears before the opts set by yarn.app.mapreduce.am.command-opts and thus its options can be overridden user. Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
yarn.app.mapreduce.am.job.task.listener.thread-count30The number of threads used to handle RPC calls in the MR AppMaster from remote tasks
yarn.app.mapreduce.am.job.client.port-range Range of ports that the MapReduce AM can use when binding. Leave blank if you want all possible ports. For example 50000-50050,50100-50200
yarn.app.mapreduce.am.job.committer.cancel-timeout60000The amount of time in milliseconds to wait for the output committer to cancel an operation if the job is killed
yarn.app.mapreduce.am.job.committer.commit-window10000Defines a time window in milliseconds for output commit operations. If contact with the RM has occurred within this window then commits are allowed, otherwise the AM will not allow output commits until contact with the RM has been re-established.
yarn.app.mapreduce.am.scheduler.heartbeat.interval-ms1000The interval in ms at which the MR AppMaster should send heartbeats to the ResourceManager
yarn.app.mapreduce.client-am.ipc.max-retries3The number of client retries to the AM - before reconnecting to the RM to fetch Application Status.
yarn.app.mapreduce.client.max-retries3The number of client retries to the RM/HS before throwing exception. This is a layer above the ipc.
yarn.app.mapreduce.am.resource.mb1536The amount of memory the MR AppMaster needs.
yarn.app.mapreduce.am.resource.cpu-vcores1The number of virtual CPU cores the MR AppMaster needs.
mapreduce.application.classpath CLASSPATH for MR applications. A comma-separated list of CLASSPATH entries. If mapreduce.application.framework is set then this must specify the appropriate classpath for that archive, and the name of the archive must be present in the classpath. When this value is empty, the following default CLASSPATH for MR applications would be used. For Linux: $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*. For Windows: %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/*, %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/lib/*.
mapreduce.job.classloaderfalseWhether to use a separate (isolated) classloader for user classes in the task JVM.
mapreduce.job.classloader.system.classesjava.,javax.,org.apache.commons.logging.,org.apache.log4j.,org.apache.hadoop.A comma-separated list of classes that should be loaded from the system classpath, not the user-supplied JARs, when mapreduce.job.classloader is enabled. Names ending in '.' (period) are treated as package names, and names starting with a '-' are treated as negative matches.
mapreduce.jobhistory.address0.0.0.0:10020MapReduce JobHistory Server IPC host:port
mapreduce.jobhistory.webapp.address0.0.0.0:19888MapReduce JobHistory Server Web UI host:port
mapreduce.jobhistory.keytab/etc/security/keytab/jhs.service.keytabLocation of the kerberos keytab file for the MapReduce JobHistory Server.
mapreduce.jobhistory.principaljhs/_HOST@REALM.TLDKerberos principal name for the MapReduce JobHistory Server.
mapreduce.jobhistory.intermediate-done-dir${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate 
mapreduce.jobhistory.done-dir${yarn.app.mapreduce.am.staging-dir}/history/done 
mapreduce.jobhistory.cleaner.enabletrue 
mapreduce.jobhistory.cleaner.interval-ms86400000How often the job history cleaner checks for files to delete, in milliseconds. Defaults to 86400000 (one day). Files are only deleted if they are older than mapreduce.jobhistory.max-age-ms.
mapreduce.jobhistory.max-age-ms604800000Job history files older than this many milliseconds will be deleted when the history cleaner runs. Defaults to 604800000 (1 week).
mapreduce.jobhistory.client.thread-count10The number of threads to handle client API requests
mapreduce.jobhistory.datestring.cache.size200000Size of the date string cache. Effects the number of directories which will be scanned to find a job.
mapreduce.jobhistory.joblist.cache.size20000Size of the job list cache
mapreduce.jobhistory.loadedjobs.cache.size5Size of the loaded job cache
mapreduce.jobhistory.move.interval-ms180000Scan for history files to more from intermediate done dir to done dir at this frequency.
mapreduce.jobhistory.move.thread-count3The number of threads used to move files.
mapreduce.jobhistory.store.class The HistoryStorage class to use to cache history data.
mapreduce.jobhistory.minicluster.fixed.portsfalseWhether to use fixed ports with the minicluster
mapreduce.jobhistory.http.policyHTTP_ONLYThis configures the HTTP endpoint for JobHistoryServer web UI. The following values are supported: - HTTP_ONLY : Service is provided only on http - HTTPS_ONLY : Service is provided only on https

yarn-site.xml

引用:http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-common/yarn-default.xml

namevaluedescription
yarn.ipc.client.factory.class Factory to create client IPC classes.
yarn.ipc.serializer.typeprotocolbuffersType of serialization to use.
yarn.ipc.server.factory.class Factory to create server IPC classes.
yarn.ipc.exception.factory.class Factory to create IPC exceptions.
yarn.ipc.record.factory.class Factory to create serializeable records.
yarn.ipc.rpc.classorg.apache.hadoop.yarn.ipc.HadoopYarnProtoRPCRPC class implementation
yarn.resourcemanager.hostname0.0.0.0The hostname of the RM.
yarn.resourcemanager.address${yarn.resourcemanager.hostname}:8032The address of the applications manager interface in the RM.
yarn.resourcemanager.client.thread-count50The number of threads used to handle applications manager requests.
yarn.am.liveness-monitor.expiry-interval-ms600000The expiry interval for application master reporting.
yarn.resourcemanager.principal The Kerberos principal for the resource manager.
yarn.resourcemanager.scheduler.address${yarn.resourcemanager.hostname}:8030The address of the scheduler interface.
yarn.resourcemanager.scheduler.client.thread-count50Number of threads to handle scheduler interface.
yarn.http.policyHTTP_ONLYThis configures the HTTP endpoint for Yarn Daemons.The following values are supported: - HTTP_ONLY : Service is provided only on http - HTTPS_ONLY : Service is provided only on https
yarn.resourcemanager.webapp.address${yarn.resourcemanager.hostname}:8088The http address of the RM web application.
yarn.resourcemanager.webapp.https.address${yarn.resourcemanager.hostname}:8090The https adddress of the RM web application.
yarn.resourcemanager.resource-tracker.address${yarn.resourcemanager.hostname}:8031 
yarn.acl.enabletrueAre acls enabled.
yarn.admin.acl*ACL of who can be admin of the YARN cluster.
yarn.resourcemanager.admin.address${yarn.resourcemanager.hostname}:8033The address of the RM admin interface.
yarn.resourcemanager.admin.client.thread-count1Number of threads used to handle RM admin interface.
yarn.resourcemanager.amliveliness-monitor.interval-ms1000How often should the RM check that the AM is still alive.
yarn.resourcemanager.connect.max-wait.ms900000Maximum time to wait to establish connection to ResourceManager.
yarn.resourcemanager.connect.retry-interval.ms30000How often to try connecting to the ResourceManager.
yarn.resourcemanager.am.max-attempts2The maximum number of application attempts. It's a global setting for all application masters. Each application master can specify its individual maximum number of application attempts via the API, but the individual number cannot be more than the global upper bound. If it is, the resourcemanager will override it. The default number is set to 2, to allow at least one retry for AM.
yarn.resourcemanager.container.liveness-monitor.interval-ms600000How often to check that containers are still alive.
yarn.resourcemanager.keytab/etc/krb5.keytabThe keytab for the resource manager.
yarn.nm.liveness-monitor.expiry-interval-ms600000How long to wait until a node manager is considered dead.
yarn.resourcemanager.nm.liveness-monitor.interval-ms1000How often to check that node managers are still alive.
yarn.resourcemanager.nodes.include-path Path to file with nodes to include.
yarn.resourcemanager.nodes.exclude-path Path to file with nodes to exclude.
yarn.resourcemanager.resource-tracker.client.thread-count50Number of threads to handle resource tracker calls.
yarn.resourcemanager.scheduler.classorg.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulerThe class to use as the resource scheduler.
yarn.scheduler.minimum-allocation-mb1024The minimum allocation for every container request at the RM, in MBs. Memory requests lower than this won't take effect, and the specified value will get allocated at minimum.
yarn.scheduler.maximum-allocation-mb8192The maximum allocation for every container request at the RM, in MBs. Memory requests higher than this won't take effect, and will get capped to this value.
yarn.scheduler.minimum-allocation-vcores1The minimum allocation for every container request at the RM, in terms of virtual CPU cores. Requests lower than this won't take effect, and the specified value will get allocated the minimum.
yarn.scheduler.maximum-allocation-vcores32The maximum allocation for every container request at the RM, in terms of virtual CPU cores. Requests higher than this won't take effect, and will get capped to this value.
yarn.resourcemanager.recovery.enabledfalseEnable RM to recover state after starting. If true, then yarn.resourcemanager.store.class must be specified
yarn.resourcemanager.store.classorg.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStoreThe class to use as the persistent store.
yarn.resourcemanager.fs.state-store.uri${hadoop.tmp.dir}/yarn/system/rmstoreURI pointing to the location of the FileSystem path where RM state will be stored. This must be supplied when using org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore as the value for yarn.resourcemanager.store.class
yarn.resourcemanager.max-completed-applications10000The maximum number of completed applications RM keeps.
yarn.resourcemanager.delayed.delegation-token.removal-interval-ms30000Interval at which the delayed token removal thread runs
yarn.resourcemanager.application-tokens.master-key-rolling-interval-secs86400Interval for the roll over for the master key used to generate application tokens
yarn.resourcemanager.container-tokens.master-key-rolling-interval-secs86400Interval for the roll over for the master key used to generate container tokens. It is expected to be much greater than yarn.nm.liveness-monitor.expiry-interval-ms and yarn.rm.container-allocation.expiry-interval-ms. Otherwise the behavior is undefined.
yarn.resourcemanager.nodemanagers.heartbeat-interval-ms1000The heart-beat interval in milliseconds for every NodeManager in the cluster.
yarn.resourcemanager.scheduler.monitor.enablefalseEnable a set of periodic monitors (specified in yarn.resourcemanager.scheduler.monitor.policies) that affect the scheduler.
yarn.resourcemanager.scheduler.monitor.policiesorg.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicyThe list of SchedulingEditPolicy classes that interact with the scheduler. A particular module may be incompatible with the scheduler, other policies, or a configuration of either.
yarn.nodemanager.hostname0.0.0.0The hostname of the NM.
yarn.nodemanager.address${yarn.nodemanager.hostname}:0The address of the container manager in the NM.
yarn.nodemanager.admin-envMALLOC_ARENA_MAX=$MALLOC_ARENA_MAXEnvironment variables that should be forwarded from the NodeManager's environment to the container's.
yarn.nodemanager.env-whitelistJAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,HADOOP_YARN_HOMEEnvironment variables that containers may override rather than use NodeManager's default.
yarn.nodemanager.container-executor.classorg.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutorwho will execute(launch) the containers.
yarn.nodemanager.container-manager.thread-count20Number of threads container manager uses.
yarn.nodemanager.delete.thread-count4Number of threads used in cleanup.
yarn.nodemanager.delete.debug-delay-sec0Number of seconds after an application finishes before the nodemanager's DeletionService will delete the application's localized file directory and log directory. To diagnose Yarn application problems, set this property's value large enough (for example, to 600 = 10 minutes) to permit examination of these directories. After changing the property's value, you must restart the nodemanager in order for it to have an effect. The roots of Yarn applications' work directories is configurable with the yarn.nodemanager.local-dirs property (see below), and the roots of the Yarn applications' log directories is configurable with the yarn.nodemanager.log-dirs property (see also below).
yarn.nodemanager.keytab/etc/krb5.keytabKeytab for NM.
yarn.nodemanager.local-dirs${hadoop.tmp.dir}/nm-local-dirList of directories to store localized files in. An application's localized file directory will be found in: ${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}. Individual containers' work directories, called container_${contid}, will be subdirectories of this.
yarn.nodemanager.local-cache.max-files-per-directory8192It limits the maximum number of files which will be localized in a single local directory. If the limit is reached then sub-directories will be created and new files will be localized in them. If it is set to a value less than or equal to 36 [which are sub-directories (0-9 and then a-z)] then NodeManager will fail to start. For example; [for public cache] if this is configured with a value of 40 ( 4 files + 36 sub-directories) and the local-dir is "/tmp/local-dir1" then it will allow 4 files to be created directly inside "/tmp/local-dir1/filecache". For files that are localized further it will create a sub-directory "0" inside "/tmp/local-dir1/filecache" and will localize files inside it until it becomes full. If a file is removed from a sub-directory that is marked full, then that sub-directory will be used back again to localize files.
yarn.nodemanager.localizer.address${yarn.nodemanager.hostname}:8040Address where the localizer IPC is.
yarn.nodemanager.localizer.cache.cleanup.interval-ms600000Interval in between cache cleanups.
yarn.nodemanager.localizer.cache.target-size-mb10240Target size of localizer cache in MB, per local directory.
yarn.nodemanager.localizer.client.thread-count5Number of threads to handle localization requests.
yarn.nodemanager.localizer.fetch.thread-count4Number of threads to use for localization fetching.
yarn.nodemanager.log-dirs${yarn.log.dir}/userlogsWhere to store container logs. An application's localized log directory will be found in ${yarn.nodemanager.log-dirs}/application_${appid}. Individual containers' log directories will be below this, in directories named container_{$contid}. Each container directory will contain the files stderr, stdin, and syslog generated by that container.
yarn.log-aggregation-enablefalseWhether to enable log aggregation
yarn.log-aggregation.retain-seconds-1How long to keep aggregation logs before deleting them. -1 disables. Be careful set this too small and you will spam the name node.
yarn.log-aggregation.retain-check-interval-seconds-1How long to wait between aggregated log retention checks. If set to 0 or a negative value then the value is computed as one-tenth of the aggregated log retention time. Be careful set this too small and you will spam the name node.
yarn.nodemanager.log.retain-seconds10800Time in seconds to retain user logs. Only applicable if log aggregation is disabled
yarn.nodemanager.remote-app-log-dir/tmp/logsWhere to aggregate logs to.
yarn.nodemanager.remote-app-log-dir-suffixlogsThe remote log dir will be created at {yarn.nodemanager.remote-app-log-dir}/${user}/{thisParam}
yarn.nodemanager.resource.memory-mb8192Amount of physical memory, in MB, that can be allocated for containers.
yarn.nodemanager.pmem-check-enabledtrueWhether physical memory limits will be enforced for containers.
yarn.nodemanager.vmem-check-enabledtrueWhether virtual memory limits will be enforced for containers.
yarn.nodemanager.vmem-pmem-ratio2.1Ratio between virtual memory to physical memory when setting memory limits for containers. Container allocations are expressed in terms of physical memory, and virtual memory usage is allowed to exceed this allocation by this ratio.
yarn.nodemanager.resource.cpu-vcores8Number of CPU cores that can be allocated for containers.
yarn.nodemanager.webapp.address${yarn.nodemanager.hostname}:8042NM Webapp address.
yarn.nodemanager.container-monitor.interval-ms3000How often to monitor containers.
yarn.nodemanager.container-monitor.resource-calculator.class Class that calculates containers current resource utilization.
yarn.nodemanager.health-checker.interval-ms600000Frequency of running node health script.
yarn.nodemanager.health-checker.script.timeout-ms1200000Script time out period.
yarn.nodemanager.health-checker.script.path The health check script to run.
yarn.nodemanager.health-checker.script.opts The arguments to pass to the health check script.
yarn.nodemanager.disk-health-checker.interval-ms120000Frequency of running disk health checker code.
yarn.nodemanager.disk-health-checker.min-healthy-disks0.25The minimum fraction of number of disks to be healthy for the nodemanager to launch new containers. This correspond to both yarn-nodemanager.local-dirs and yarn.nodemanager.log-dirs. i.e. If there are less number of healthy local-dirs (or log-dirs) available, then new containers will not be launched on this node.
yarn.nodemanager.linux-container-executor.path The path to the Linux container executor.
yarn.nodemanager.linux-container-executor.resources-handler.classorg.apache.hadoop.yarn.server.nodemanager.util.DefaultLCEResourcesHandlerThe class which should help the LCE handle resources.
yarn.nodemanager.linux-container-executor.cgroups.hierarchy/hadoop-yarnThe cgroups hierarchy under which to place YARN proccesses (cannot contain commas). If yarn.nodemanager.linux-container-executor.cgroups.mount is false (that is, if cgroups have been pre-configured), then this cgroups hierarchy must already exist and be writable by the NodeManager user, otherwise the NodeManager may fail. Only used when the LCE resources handler is set to the CgroupsLCEResourcesHandler.
yarn.nodemanager.linux-container-executor.cgroups.mountfalseWhether the LCE should attempt to mount cgroups if not found. Only used when the LCE resources handler is set to the CgroupsLCEResourcesHandler.
yarn.nodemanager.linux-container-executor.cgroups.mount-path Where the LCE should attempt to mount cgroups if not found. Common locations include /sys/fs/cgroup and /cgroup; the default location can vary depending on the Linux distribution in use. This path must exist before the NodeManager is launched. Only used when the LCE resources handler is set to the CgroupsLCEResourcesHandler, and yarn.nodemanager.linux-container-executor.cgroups.mount is true.
yarn.nodemanager.log-aggregation.compression-typenoneT-file compression types used to compress aggregated logs.
yarn.nodemanager.principal The kerberos principal for the node manager.
yarn.nodemanager.aux-services the valid service name should only contain a-zA-Z0-9_ and can not start with numbers
yarn.nodemanager.sleep-delay-before-sigkill.ms250No. of ms to wait between sending a SIGTERM and SIGKILL to a container
yarn.nodemanager.process-kill-wait.ms2000Max time to wait for a process to come up when trying to cleanup a container
yarn.nodemanager.resourcemanager.connect.wait.secs900Max time, in seconds, to wait to establish a connection to RM when NM starts. The NM will shutdown if it cannot connect to RM within the specified max time period. If the value is set as -1, then NM will retry forever.
yarn.nodemanager.resourcemanager.connect.retry_interval.secs30Time interval, in seconds, between each NM attempt to connect to RM.
yarn.client.nodemanager-client-async.thread-pool-max-size500Max number of threads in NMClientAsync to process container management events
yarn.client.max-nodemanagers-proxies500Maximum number of proxy connections for node manager. It should always be more than 1. NMClient and MRAppMaster will use this to cache connection with node manager. There will be at max one connection per node manager. Ex. configuring it to a value of 5 will make sure that client will at max have 5 connections cached with 5 different node managers. These connections will be timed out if idle for more than system wide idle timeout period. The token if used for authentication then it will be used only at connection creation time. If new token is received then earlier connection should be closed in order to use newer token. This and (yarn.client.nodemanager-client-async.thread-pool-max-size) are related and should be sync (no need for them to be equal).
yarn.nodemanager.aux-services.mapreduce_shuffle.classorg.apache.hadoop.mapred.ShuffleHandler 
mapreduce.job.jar  
mapreduce.job.hdfs-servers${fs.defaultFS} 
yarn.web-proxy.principal The kerberos principal for the proxy, if the proxy is not running as part of the RM.
yarn.web-proxy.keytab Keytab for WebAppProxy, if the proxy is not running as part of the RM.
yarn.web-proxy.address The address for the web proxy as HOST:PORT, if this is not given then the proxy will run as part of the RM
yarn.application.classpath$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,$HADOOP_YARN_HOME/share/hadoop/yarn/*,$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*CLASSPATH for YARN applications. A comma-separated list of CLASSPATH entries
yarn.client.app-submission.poll-interval1000The interval of the yarn client's querying application state after application submission. The unit is millisecond.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值