前面介绍的算法在最坏的情况下还是很糟糕。这次会介绍一种二分查找树并能保证无论如何构造它,他的运行时间都是对数级别的。理想情况下我们希望能够保持二分查找树的平衡性。但是,在动态插入中保证树的完美平衡的代价太高了。
2-3查找树
我们将一棵标准的二叉查找树中的节点成为2-节点(含有一个键和两条链接),现在我们引入3-节点,它含有两个键和三条链接。
查找
要判断一个键是否在树中,我们先将它和根节点中的键比较。如果它和其中任意一个相等,查找命中;否则我们就根据比较的结果找到指向相应区间的链接,并在其指向的子树中递归的递归查找。如果这个是空链接,查找未命中。
插入
树的平衡:
任何节点的左子树和右子树之间的高度差不能超过1。
上图中(a)是平衡的,(b)是不平衡的,很显然,一个完全不平衡的树,在做查找时,它就是线性级别的性能,而平衡的二叉树,同样的数据量,但有效利用了平衡性,它的查找性能则能降到对数级别。
而动态平衡要求的是要在插入是,时刻保持树的平衡性。
分为几种情况: