蜘蛛蜂优化算法在无人机路径规划中的应用研究
摘要
- 本文提出一种基于蜘蛛蜂优化算法(Spider Wasp Optimization, SWO)的无人机三维路径规划方法。通过模拟蜘蛛蜂捕食与协作行为,结合动态自适应权重策略,优化无人机路径的长度与安全性。实验表明,SWO算法相比粒子群优化(PSO)与遗传算法(GA),在收敛速度与避障能力上具有显著优势。
1. 引言
- 无人机路径规划需解决多约束条件下的全局优化问题。传统算法易陷入局部最优,而群智能算法展现强大潜力。受蜘蛛蜂狩猎行为启发,SWO算法通过分工机制平衡探索与开发能力,适用于复杂环境路径搜索。
2. 蜘蛛蜂优化算法原理
2.1 种群初始化
随机生成初始解,每个个体表示一条路径,编码为三维航点序列:
Xi={
(x1,y1,z1),(x2,y2,z2),...,(xn,yn,zn)} \mathbf{X}_i = \{ (x_1,y_1,z_1), (x_2,y_2,z_2), ..., (x_n,y_n,z_n) \}