算法 | 蜘蛛蜂优化算法在无人机路径规划中的应用研究(附matlab代码)

蜘蛛蜂优化算法在无人机路径规划中的应用研究

摘要
  • 本文提出一种基于蜘蛛蜂优化算法(Spider Wasp Optimization, SWO)的无人机三维路径规划方法。通过模拟蜘蛛蜂捕食与协作行为,结合动态自适应权重策略,优化无人机路径的长度与安全性。实验表明,SWO算法相比粒子群优化(PSO)与遗传算法(GA),在收敛速度与避障能力上具有显著优势。

1. 引言
  • 无人机路径规划需解决多约束条件下的全局优化问题。传统算法易陷入局部最优,而群智能算法展现强大潜力。受蜘蛛蜂狩猎行为启发,SWO算法通过分工机制平衡探索与开发能力,适用于复杂环境路径搜索。

2. 蜘蛛蜂优化算法原理

2.1 种群初始化
随机生成初始解,每个个体表示一条路径,编码为三维航点序列:
Xi={ (x1,y1,z1),(x2,y2,z2),...,(xn,yn,zn)} \mathbf{X}_i = \{ (x_1,y_1,z_1), (x_2,y_2,z_2), ..., (x_n,y_n,z_n) \}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值