深度学习笔记
取取经
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习常见问题
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。 一、如何降低过拟合[1]1. 什么是过拟合在给定的训练集上表现良好,使得模型过于复杂。2. 过拟合带来的危害在给定的训练集上表现良好,但在测试集上表现很差,即泛化能力很弱。3. 如何解决过拟合(1)调整现有数据,给现有数据添加噪声。(2)使用dropoutdropo...原创 2018-06-07 21:32:29 · 577 阅读 · 0 评论 -
【深度学习笔记2.2.1】AlexNet
概述 2012年,Hinton的学生Alex Krizhevsky提出的深度卷积神经网络模型AlexNet获得了2012年ILSVRC比赛分类项目的冠军。AlexNet是在LeNet的基础上发展起来的,AlexNet首次引入了Dropout层来处理过拟合以及使用ReLU替代sigmoid来作为激活函数。网上资料一堆,不想重复造轮子了。参考文献[1] ImageNet Classifica...转载 2019-02-25 19:22:17 · 669 阅读 · 0 评论 -
【深度学习笔记3.2 正则化】Dropout
关于dropout的理解与总结:dropout是什么?参考文献[1]dropout会让train变差,让test变好。一般的如果在train-set上表现好,在test-set上表现差,用dropout才有效果。使用dropout是为了避免过拟合。(来自网友)下图来自文献[3] 上图中的思想就是说:Dropout是一种正则化技术,是防止过拟合最有效的方法,然而在以下几种情况下使用dr...原创 2019-02-17 16:16:12 · 1203 阅读 · 0 评论 -
【深度学习笔记3.1 正则化】权重衰减(weight decay)
权重衰减是什么?参考有关文献这里参考文献[1]整理成如下代码:(详见文献[5]regularization/WeightDecay.py)import numpy as npimport tensorflow as tffrom matplotlib import pyplot as pltn_train = 20n_test = 100num_inputs = 200tr...原创 2019-02-17 16:15:12 · 1281 阅读 · 0 评论 -
【深度学习笔记2.3】VGG
vgg16_1代码示例如下(详见文献[2]vgg16_1.py):import numpy as npimport cv2import tensorflow as tffrom datetime import datetimeimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import i...原创 2019-02-17 16:14:45 · 481 阅读 · 0 评论 -
【深度学习笔记2.2.2】AlexNet训练mnist
算法优化思路即方法AlexNet Tensorflow 实现代码示例如下(详见文献[2]AlexNet1.py):import numpy as npimport cv2import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport matplotlib.pyplot as...原创 2019-02-17 16:12:44 · 850 阅读 · 0 评论 -
【深度学习笔记2.1】LeNet-5
概述LeNet-5中的-5是个啥?Gradient-Based Learning Applied to Document Recognition图1 [3]是一种基于函数一阶性质的优化算法,其本质是在某个位置将目标函数一阶展开,利用其一阶性质持续向函数值下降最快的方向前进,以期找到函数的全局最小解。梯度下降属于梯度优化方法大类,此外还有最速下降法,共轭梯度法等等。还有其他方法基于目标函数的二阶性质,比如牛顿法、拟牛顿法等[1]。注意:梯度下降法就是最速下降法,很多地方、很多人、包括维基百科...原创 2019-02-17 16:07:48 · 2016 阅读 · 0 评论 -
【深度学习笔记1.1】人工神经网络(内含模型保存与恢复介绍)
线性阈值单元线性阈值单元(LTU):输入和输出是数字(而不是二进制开/关值),并且每个输入连接都与权重相连。LTU计算其输入的加权和(z = W1×1 + W2×2 + … + + WN×n = Wt·x),然后将阶跃函数应用于该和,并输出结果:HW(x) = STEP(Z) = STEP(W^T·x) [1]。单一的 LTU 可被用作简单线性二元分类[2]。代码示例1sklearn 提...原创 2019-02-17 16:06:05 · 1395 阅读 · 0 评论 -
【深度学习笔记2.2.3】AlexNet训练17flowers
概述本文介绍使用AlexNet做17flowers的分类任务,代码参考文献[1],数据集17flowers来自文献[2],预训练模型bvlc_alexnet.npy来自文献[4]。实验1:finetune最后一个全连接层调参实验总结如下:初始学习率不能大于0.0001,否则训练loss将会是nan;如果learning_rate_init = 0.0001,train_layers =...原创 2019-02-25 19:34:05 · 1866 阅读 · 2 评论
分享