一、题目
1、题目描述
给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例1:
输入:root = [2,1,3]
输出:true
示例2:
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
2、基础框架
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
}
};
3、原题链接
二、解题报告
1、思路分析
(1)两种方法:
① 中序遍历,如果中序遍历的结果是递增的,则一定是二叉搜索树;
② 递归。如果节点 x 的左子树是二叉搜索数,右子树也是二叉搜索树,且左子树的最大值小于 x,右子树的最小值大于 x,那么它就是一棵二叉搜索树。为了不做分情况的特判,使得每个节点都返回相同的信息,所以用结构体 Info 来收集每个节点的信息:(1)是否为二叉搜索树 (2)整棵树的最大值 (3)整棵树的最小值
2、时间复杂度
O ( n ) O(n) O(n)
3、代码详解
- 中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> ans;
void inOrderTraversal(TreeNode *root) {
if (root == nullptr) return ;
inOrderTraversal(root->left);
ans.push_back(root->val);
inOrderTraversal(root->right);
}
bool isValidBST(TreeNode* root) {
inOrderTraversal(root);
for (int i = 1; i < ans.size(); i++) {
if (ans[i] <= ans[i - 1])
return false;
}
return true;
}
};
- 递归:节点信息同全,每个节点都返回相同的信息
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
struct Info {
bool isBST;
int max;
int min;
Info(bool is, int ma, int mi) : isBST(is), max(ma), min(mi) {}
};
Info *process(TreeNode *root) {
if (root == nullptr)
return nullptr;
Info *leftInfo = process(root->left);
Info *rightInfo = process(root->right);
//记录整棵树的最大值和最小值
int _max = root->val;
int _min = root->val;
if (leftInfo != nullptr) {
_max = max(_max, leftInfo->max);
_min = min(_min, leftInfo->min);
}
if (rightInfo != nullptr) {
_max = max(_max, rightInfo->max);
_min = min(_min, rightInfo->min);
}
//判断左右子树是否为二叉搜索树
bool isBST = true;
if (leftInfo != nullptr && !leftInfo->isBST) isBST = false;
if (rightInfo != nullptr && !rightInfo->isBST) isBST = false;
//判断是否左子树的最大值小于root节点的值,右子树的最小值大于root节点的值
bool leftMaxLessX = leftInfo == nullptr ? true : (leftInfo->max < root->val);
bool rightMinMoreX = rightInfo == nullptr ? true : (rightInfo->min > root->val);
if (!leftMaxLessX || !rightMinMoreX) {
isBST = false;
}
return new Info(isBST, _max, _min);
}
bool isValidBST(TreeNode* root) {
return process(root)->isBST;
}
};