【Leetcode】98. 验证二叉搜索树(中等)

本文探讨了如何通过中序遍历和递归算法判断一个二叉树是否为有效的二叉搜索树。两种方法详细讲解了思路、时间复杂度,并提供了对应的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

1、题目描述

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例1:
在这里插入图片描述

输入:root = [2,1,3]
输出:true

示例2:
在这里插入图片描述

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

2、基础框架

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isValidBST(TreeNode* root) {

    }
};

3、原题链接

   98. 验证二叉搜索树

二、解题报告

1、思路分析

  (1)两种方法:
      ① 中序遍历,如果中序遍历的结果是递增的,则一定是二叉搜索树;
      ② 递归。如果节点 x 的左子树是二叉搜索数,右子树也是二叉搜索树,且左子树的最大值小于 x,右子树的最小值大于 x,那么它就是一棵二叉搜索树。为了不做分情况的特判,使得每个节点都返回相同的信息,所以用结构体 Info 来收集每个节点的信息:(1)是否为二叉搜索树 (2)整棵树的最大值 (3)整棵树的最小值

2、时间复杂度

   O ( n ) O(n) O(n)

3、代码详解

  • 中序遍历
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> ans;    
    void inOrderTraversal(TreeNode *root) {
        if (root == nullptr) return ;

        inOrderTraversal(root->left);
        ans.push_back(root->val);
        inOrderTraversal(root->right);
    }

    bool isValidBST(TreeNode* root) {
        inOrderTraversal(root);
        for (int i = 1; i < ans.size(); i++) {
            if (ans[i] <= ans[i - 1]) 
                return false;
        }
        return true;
    }
};
  • 递归:节点信息同全,每个节点都返回相同的信息
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    struct Info {
        bool isBST;
        int max;
        int min;
        Info(bool is, int ma, int mi) : isBST(is), max(ma), min(mi) {}
    };

    Info *process(TreeNode *root) {
        if (root == nullptr)
            return nullptr;

        Info *leftInfo = process(root->left);
        Info *rightInfo = process(root->right);

        //记录整棵树的最大值和最小值
        int _max = root->val;
        int _min = root->val;
        if (leftInfo != nullptr) {
            _max = max(_max, leftInfo->max);
            _min = min(_min, leftInfo->min);
        }

        if (rightInfo != nullptr) {
            _max = max(_max, rightInfo->max);
            _min = min(_min, rightInfo->min);
        }

        //判断左右子树是否为二叉搜索树
        bool isBST = true;
        if (leftInfo != nullptr && !leftInfo->isBST) isBST = false;
        if (rightInfo != nullptr && !rightInfo->isBST) isBST = false;

        //判断是否左子树的最大值小于root节点的值,右子树的最小值大于root节点的值
        bool leftMaxLessX = leftInfo == nullptr ? true : (leftInfo->max < root->val);
        bool rightMinMoreX = rightInfo == nullptr ? true : (rightInfo->min > root->val);

        if (!leftMaxLessX || !rightMinMoreX) {
            isBST = false;
        }

        return new Info(isBST, _max, _min);
    }

    bool isValidBST(TreeNode* root) {
        return process(root)->isBST;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值