微软面试题:打印折纸的折痕

这篇文章介绍了如何通过递归计算并打印出纸条对折N次后的折痕方向,展示了折痕变化规律,以及用C++实现的中序遍历算法。关键在于理解折痕形成如同二叉树的结构,并掌握其规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、题目

请把一段纸条竖着放置在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时折痕是凹下去的,即折痕突起的方向指向纸条的背面。 如果从纸条的下边向上方连续对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。

给定一个输入参数 NNN,代表纸条都从下边向上方连续对折 NNN 次。 请从上到下打印所有折痕的方向。

示例1:

输入:N = 1
输出:down

示例2:

输入:N = 2
输出:down down up 

2、分析

通过实践得知:

  1. 对折一次的折痕:1凹
  2. 对折两次的折痕:2凹 1凹 2凸
  3. 对折三次的折痕:3凹 2凹 3凸 1凹 3凹 2凸 3凸

可见,每增加一次折痕,就是在原折痕的左侧新增了一条凹,右侧新增了一条凸。

如果想从上往下打印所有折痕,它就是一棵二叉树的中序遍历序列:
请添加图片描述
且这棵二叉树有着明确的规则:

  • 根节点是 凹 的
  • 所有左子树的根是 凹 的
  • 所有右子树的根是 凸 的

3、实现

C++ 版

/*************************************************************************
	> File Name: 033.打印折纸的折痕.cpp
	> Author: Maureen 
	> Mail: Maureen@qq.com 
	> Created Time: 三  6/22 14:20:40 2022
 ************************************************************************/

#include <iostream>
using namespace std;


/**
 * 当前来到了一个节点(折痕),脑海中想象的
 * 这个节点在第 i 层,共有 n 层,n 固定不变
 * 这个节点如果是凹的,down = true
 * 这个节点如果是凸的,down = false
 * 函数功能:中序打印以你想象的节点为头的整棵树
 * 额外空间复杂度:O(N),虽然节点数是 2^N - 1,但是实际占用的空间是O(N),
 * N 是层数也是递归深度,用递归模拟了想象,并没有生成实际的树
 */
void process(int i, int n, bool down) {
    if (i > n) return ;
    
    //中序打印 
    process(i + 1, n, true); //左孩子
    //cout << i << (down ? "凹" : "凸"); 
    cout << (down ? "凹" : "凸");
    process(i + 1, n, false);//右孩子

}

void printAllFolds(int n) {
    process(1, n, true);
    cout << endl;
}

int main() {
    int n;
    cin >> n;
    printAllFolds(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值