题目:213. 打家劫舍 II
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
本题的不同之处在于房屋首尾相连,也就是说第0
间房和第n-1
间房不能同时偷。
因此,我们考虑偷或不偷第n-1
间房的,将问题分解为两种情况:
当考虑偷第n-1
间房屋时,我们求解偷窃第1
间到第n-1
间房屋的最大金额即可;
当不考虑偷第n-1
间房屋时,我们求解偷窃第0
间到第n-2
间房屋的最大金额即可。
最终解为两种情况的最大值。
代码
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
if (n == 0) {
return 0;
} else if (n == 1) {
return nums[0];
}
//考虑不偷最后一个房间时
int cur = 0;
int pre = 0;
for (int i = 0; i < n-1; i++) {
int tcur = cur;
cur = max(cur, pre + nums[i]);
pre = tcur;
}
int ans = cur;
//考虑偷最后一间房时
cur = 0;
pre = 0;
for (int i = 1; i < n; i++) {
int tcur = cur;
cur = max(cur, pre + nums[i]);
pre = tcur;
}
return max(cur, ans);
}
};