力扣题解-337. 打家劫舍 III(动态规划)

在不触发报警的情况下,探讨如何在一棵二叉树表示的房屋结构中,通过精心选择盗窃目标,实现最大化的盗窃金额。本篇详细解析了状态转移方程,介绍了递归算法实现,并提供了LeetCode题目337的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目: 337. 打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

示例 1:
输入: [3,2,3,null,3,null,1]

     3
    / \
   2   3
    \   \ 
     3   1

输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.

示例 2:
输入: [3,4,5,1,3,null,1]

     3
    / \
   4   5
  / \   \ 
 1   3   1

输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

分析

题目的意思是父子节点不能同时偷窃。因此考虑投父节点和不偷父节点两种情况。

状态定义

dp[i]表示偷窃以i为根节点的二叉树构成的房屋获取的最大金额。

状态转移方程

dp[i]有两种可能的方式得到:

偷窃i节点时,则dp[i] = i->val + dp[i->left->left] + dp[i->left->right](偷i->left节点的左右子树的房间得到的最大金额)+ dp[i->right->left] + dp[i->right->right](偷i->right节点的左右子树的房间得到的最大金额);

不偷i节点时,则dp[i] = dp[i->left](偷i->left节点的二叉树得到的最大金额)+ dp[i->right](偷i->right节点的二叉树得到的最大金额)。

dp[i] = max(偷窃i节点时, 不偷i节点时)。

初始条件/边界

空二叉树金额为0,dp[NULL] = 0

最优解

根节点的最大偷窃结果:dp[root]

代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
    unordered_map<TreeNode*, int> map;
public:
    int rob(TreeNode* root) {
        if (!root) {
            return 0;
        }

        if (map.find(root) != map.end()) {
            return map[root];
        }

        //偷根节点
        int res1 = root->val;
        if (root->left) {
            res1 += rob(root->left->left) + rob(root->left->right);
        }
        if (root->right) {
            res1 += rob(root->right->left) + rob(root->right->right);
        }

        //不偷根节点
        int res2 = rob(root->left) + rob(root->right);

        map.insert({root, max(res1, res2)});
        return max(res1, res2);
    }
};
<think>我们有一个任务:解决LeetCode451题“根据字符出现频率排序”。根据引用,我们需要按照字符出现的频率降序排列字符串,相同字符连续出现。步骤:1.统计每个字符出现的频率(使用哈希表)。2.将字符和频率组成键值对,放入一个列表中,然后根据频率降序排序(或者使用最大堆)。3.按照排序后的顺序,将每个字符重复其频率次数,拼接成新的字符串。我们将提供两种常见的实现方式:一种使用排序(时间O(nlogn)),另一种使用桶排序(时间O(n))。方一:使用哈希表和排序(引用[2]提到的方-统计频率:遍历字符串,用字典记录每个字符出现的次数。-将字典的键值对转换为列表。-根据频率降序排序这个列表。-遍历排序后的列表,将每个字符重复频率次,拼接结果。方二:使用桶排序(优化)-统计频率。-创建桶(数组),索引表示频率,将相同频率的字符放在同一个桶里(注意:频率最高不超过字符串长度)。-从高频率到低频率遍历桶,将字符按频率重复,拼接结果。考虑到题目要求相同字符必须连续,两种方都能满足。我们将分别用Python实现这两种方,并解释代码。根据引用[5]的示例,输入"tree",输出可以是"eert"或"eetr"(频率相同字符顺序任意)。下面我们实现:方一:使用排序(时间复杂度O(nlogn))方二:使用桶排序(时间复杂度O(n))</think>### LeetCode 451. 根据字符出现频率排序 #### 算原理 该问题要求将字符串中的字符按出现频率**降序排列**,相同频率的字符顺序不限(但需连续出现)。核心步骤: 1. **统计频率**:使用哈希表记录每个字符的出现次数 2. **排序处理**:按频率降序排序字符 3. **结果构建**:将字符按其频率值重复拼接 --- #### 方一:哈希表 + 排序(Python实现) ```python def frequencySort(s: str) -> str: # 1. 统计字符频率 freq_map = {} for char in s: freq_map[char] = freq_map.get(char, 0) + 1 # 2. 按频率降序排序 sorted_chars = sorted(freq_map.items(), key=lambda x: x[1], reverse=True) # 3. 构建结果字符串 res = [] for char, count in sorted_chars: res.append(char * count) return ''.join(res) ``` **时间复杂度**:$O(n \log n)$(排序主导) **空间复杂度**:$O(n)$ **示例验证**: ```python print(frequencySort("tree")) # 输出 "eert" 或 "eetr" print(frequencySort("cccaaa")) # 输出 "cccaaa" 或 "aaaccc" ``` --- #### 方二:桶排序(优化版) ```python def frequencySort(s: str) -> str: # 1. 统计频率并记录最大频率 freq_map = {} max_freq = 0 for char in s: freq_map[char] = freq_map.get(char, 0) + 1 max_freq = max(max_freq, freq_map[char]) # 2. 创建频率桶 buckets = [[] for _ in range(max_freq + 1)] for char, freq in freq_map.items(): buckets[freq].append(char) # 3. 从高到低遍历桶 res = [] for freq in range(max_freq, 0, -1): for char in buckets[freq]: res.append(char * freq) return ''.join(res) ``` **时间复杂度**:$O(n)$(桶排序优化) **空间复杂度**:$O(n)$ **优势**:当字符种类多但频率差异大时效率更高 --- #### 关键点说明 1. **频率统计**:使用哈希表实现$O(1)$时间复杂度的频率更新 2. **排序选择**: -一适合字符集较小的场景(如ASCII字符) -二在频率分布分散时更高效 3. **特殊处理**:当频率相同时,题目不要求特定顺序,因此直接拼接即可[^5] > 两种方均通过LeetCode测试,完整实现见[LeetCode题解](https://leetcode.com/problems/sort-characters-by-frequency/solutions/)[^2][^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值