序列化推荐的图模型——Selecting Sequences of Items via Submodular Maximization(更新中)

本文探讨了一种序列化推荐方法——OMEGA,它利用图模型和子模最大化解决推荐序列的选择问题。针对用户观看历史的顺序影响,OMEGA通过选择边而非节点来最大化目标函数,确保推荐的顺序优化。实验在人造数据集和真实电影数据集上验证了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍一种基于图模型的序列化推荐方法:OMEGA。文章来自AAAI-17,题目为《Selecting Sequences of Items via Submodular Maximization》,作者是来自苏黎世联邦理工学院的Sebastian Tschiatschek,Adish Singla 以及Andreas Krause。

背景

子集选择问题

首先,介绍一下子集选择问题,该问题的目标是优化一个集合函数 f(X) ,使得 |X|k 。例如,机器学习中的特征选择、模型选择,推荐中的目标用户选择,深度学习中的网络结构选择,都属于子集选择问题。一般来说,子集选择问题是NP难的,多项式时间内只能得到近似解。
对于子集选择问题,如果目标函数满足 单调Submodular 性质,贪心算法可以达到 1e1 的近似率,即,贪心方法得到的解与最优解的比值不小于 1e1
集合有一个性质,即“无序”,在上述问题中,我们没有考虑到元素顺序时会给目标函数带来的影响,但是实际中,有些问题,不同的选择次序,会影响到目标函数值的大小。

序列化选择问题

在推荐问题中,我们需要考虑用户历史观看记录,此时,它看的顺序会影响我们推荐的结果。
如下图,假设我们要进行视频推荐,用户A先观看了生活大爆炸第一集,然后看了生活大爆炸第二集,这时,我们可能会给A推荐生活大爆炸第三集。另外,A还看了IT狂人,不过,它是先看的第二集,再看的第一集,此时,如果给A推荐第三集,似乎此时推荐成功率就不如推荐生活大爆炸第三集的成功率高。



这个例子表明,在推荐的时候,历史信息的顺序也是很重要的。

此时,我们需要给这类问题下个定义:

模型

那么,如何给这类问题建模呢?
序列化基本概念:



那么,我们的优化目标变为:
maxσΣ,|σ|<kf(σ)

注意到,考虑到集合的顺序关系,所以该模型的搜索空间是无序模型的 k! 倍。

本文研究一类特定的函数 f(σ) ,它假设选择的元素及其之间的关系构成了一个图结构 G=(V,E) ,如下图,节点代表元素,元素之间的联系用边来表示。边的含义:节点之间的相互影响。B1到B2有一条边,意思是,如果B1排在B2之前,则B1会对B2产生影响。B2到B1没有边,即如果B2排在B1之前,B2不会对B1产生影响。



edges(σ) 函数是有序集合到边的映射,对于一个有序集合 σ=(σ1,...,σk) ,对于每个 σ
### GraalVM Native Image JSON Serialization Example and Best Practices For applications running on GraalVM that require high performance, using a native image can significantly reduce startup time and lower memory usage. However, when it comes to serializing objects into JSON format within such an environment, specific considerations must be taken due to the Ahead-of-Time (AOT) compilation nature of GraalVM's native images. To achieve effective JSON serialization in a GraalVM native image context: #### Selecting Appropriate Libraries Choosing libraries compatible with AOT compilation is crucial. Jackson Databind, while popular for its flexibility, may not perform optimally without additional configurations because reflection-based approaches are less efficient under AOT conditions[^1]. Instead, alternatives like Gson or even better suited options specifically designed for this scenario should be considered. #### Configuration Adjustments When configuring these tools for use inside a native image application, ensure all necessary classes involved during runtime are registered properly so they do not rely heavily upon dynamic class loading mechanisms which might fail at execution time since many reflective operations cannot work as expected after being compiled ahead-of-time by GraalVM. Here’s how one could implement basic JSON serialization functionality using `Gson` library alongside some best practices recommendations: ```java import com.google.gson.Gson; import java.io.IOException; public class JsonSerializationExample { public static void main(String[] args) throws IOException { Person person = new Person("John", "Doe"); // Create gson instance. final var gson = new Gson(); // Serialize object to json string. String jsonString = gson.toJson(person); System.out.println(jsonString); // Deserialize from json back to object. Person deserializedPerson = gson.fromJson(jsonString, Person.class); System.out.printf("Deserialized name: %s %s%n", deserializedPerson.firstName(), deserializedPerson.lastName()); } record Person(String firstName, String lastName){} } ``` This code snippet demonstrates both serialization (`toJson`) and deserialization (`fromJson`) processes utilizing Google's Gson library, ensuring compatibility with GraalVM native images through minimal reliance on Java Reflection APIs. Additionally, consider leveraging annotations provided by chosen JSON processing frameworks to guide their behavior explicitly rather than relying solely on default settings whenever possible. This approach helps maintain predictability across different environments including those built around GraalVM native images. --related questions-- 1. How does choosing between various JSON parsing libraries impact performance in GraalVM? 2. What other data formats besides JSON offer similar benefits but potentially greater efficiency in GraalVM native images? 3. Can you provide examples where custom serializers/deserializers improve interoperability with third-party services in a GraalVM setup? 4. Are there any known issues related to security vulnerabilities associated with certain JSON handling methods used within GraalVM applications?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值