ISLR第三章线性回归应用练习题答案(下)


ISLR;R语言; 机器学习 ;线性回归

一些专业词汇只知道英语的,中文可能不标准,请轻喷


12.没有截距的简单线性回归
a)观察3.38式可发现


当x^2之和与y^2之和相等时,具有相同的参数估计。
b)

set.seed(1)
x=rnorm(100)
y=2*x
lm.fit=lm(y~x+0)
lm.fit2=lm(x~y+0)
summary(lm.fit)

输出结果:

Call:
lm(formula = y ~ x + 0)

Residuals:
       Min         1Q     Median         3Q        Max 
-3.776e-16 -3.378e-17  2.680e-18  6.113e-17  5.105e-16 

Coefficients:
   Estimate Std. Error   t value Pr(>|t|)    
x 2.000e+00  1.296e-17 1.543e+17   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.167e-16 on 99 degrees of freedom
Multiple R-squared:      1,     Adjusted R-squared:      1 
F-statistic: 2.382e+34 on 1 and 99 DF,  p-value: < 2.2e-16

线性回归2:

summary(lm.fit2)

输出结果:

Call:
lm(formula = x ~ y + 0)

Residuals:
       Min         1Q     Median         3Q        Max 
-1.888e-16 -1.689e-17  1.339e-18  3.057e-17  2.552e-16 

Coefficients:
  Estimate Std. Error   t value Pr(>|t|)    
y 5.00e-01   3.24e-18 1.543e+17   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.833e-17 on 99 degrees of freedom
Multiple R-squared:      1,     Adjusted R-squared:      1 
F-statistic: 2.382e+34 on 1 and 99 DF,  p-value: < 2.2e-16

实验发现回归参数不同
c)
sample()函数能够从指定的特定对象集合中随机取样,通过指定某类对象的向量x,然后从中取样size。
例如,从整数1到10中取样,并从中不放回地抽取4个数字使用sample(1:10, 4)
,得到3、4、5、7。如果再做一遍得到的是3、9、8、5。因为选择不放回取样,所以不会得到重复的数字。

 > set.seed(1)
 > x=rnorm(100)
 > y=sample(x,100)
 > sum(x^2)
 [1] 81.05509
 > sum(y^2)
 [1] 81.05509
 > lm.fit=lm(y~x+0)
 > lm.fit2=lm(x~y+0)
 > summary(lm.fit)

输出结果:

 Call:
 lm(formula = y ~ x + 0)

 Residuals:
     Min      1Q  Median      3Q     Max 
 -2.2315 -0.5124  0.1027  0.6877  2.3926 

 Coefficients:
   Estimate Std. Error t value Pr(>|t|)
 x  0.02148    0.10048   0.214    0.831

 Residual standard error: 0.9046 on 99 degrees of freedom
 Multiple R-squared:  0.0004614, Adjusted R-squared:  -0.009635 
 F-statistic: 0.0457 on 1 and 99 DF,  p-value: 0.8312

线性回归2:

 Call:
 lm(formula = x ~ y + 0)

 Residuals:
     Min      1Q  Median      3Q     Max 
 -2.2400 -0.5154  0.1213  0.6788  2.3959 

 Coefficients:
   Estimate Std. Error t value Pr(>|t|)
 y  0.02148    0.10048   0.214    0.831

 Residua
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值