读完《小狗钱钱》,我收获了这 5 个改变人生的理财思维

最近读完了一本经典的理财入门书籍——《小狗钱钱》。虽然这本书看起来是写给青少年的,但我觉得它同样适合成年人阅读。书中的内容通俗易懂,读完后我收获颇丰,甚至改变了我对金钱和生活的看法。今天,我想和大家分享几个让我印象深刻的点,希望能对你们也有所启发。也整理了思维导图如下。

1. 为梦想存钱:从小目标开始,积累大梦想

很多人不愿意谈及梦想,尤其是当梦想需要用金钱来实现时,总觉得遥不可及。比如,你想买一部价值2万元的三折叠手机,可能会觉得这个目标太大,难以实现。但《小狗钱钱》告诉我们,梦想并不是遥不可及的,关键是要从小目标开始,一点一滴地积累。

书中建议,把梦想写下来,每天存一点钱,哪怕只是10块钱,也要坚信自己终有一天能实现梦想。重要的是,不要抱着“试试看”的心态,而是要有坚定的信念。定期回顾自己的梦想,定期存钱,梦想就会逐渐变得触手可及。

2. 写成功日记:提升自信,相信自己能做到

自信是成功的关键。如果你不相信自己能做到某件事,那你很可能根本不会去尝试。而如果不尝试,自然什么也得不到。如何提升自信呢?书中提出了一个简单而有效的方法:写成功日记。

每天记录至少五件你认为成功的事情,无论大小。通过这种正能量的反馈,你会逐渐发现自己的能力和潜力,自信心也会随之提升。自信心的增强会让你更愿意去尝试新事物,从而获得更多的机会和成功。

3. 把精力集中在你知道的、你会的和你拥有的东西上

这个道理听起来简单,但很多人却常常忽略。我们总是羡慕别人拥有的东西,却忽视了自己已经拥有的能力和资源。书中提醒我们,要实事求是,专注于自己擅长的领域,挖掘自己能够为别人解决问题的点。

如果你能找到一件既能赚钱又喜欢做的事情,那就再好不过了。用自己喜欢的事情来赚钱,是每个人都梦寐以求的。只要你不断向内看,挖掘自己的兴趣和能力,你也能找到属于自己的赚钱门道。

4. 不管多忙,一定要花时间关注未来意义重大的事情

我们常常陷入忙碌的日常工作中,忽略了那些对未来真正重要的事情。作者在书中提醒我们,不管多忙,都要抽出时间关注那些对未来意义重大的事情。

对我来说,健身和读书就是两件无论多忙都要坚持的事情。从去年开始,我每天至少阅读30分钟,累计阅读天数已经超过500天;健身也从去年4月份开始,每个月至少健身12次,近一年来已经健身160次。这两件事对我的生活产生了深远的影响,未来我也会继续坚持下去。

5. 学会多元化投资,让鹅生蛋

理财不仅仅是存钱,更重要的是让钱为你工作。书中提到,要学会将赚到的钱进行合理配置。比如,每个月工资1万元,日常开销5000元,梦想目标存储3000元,投资2000元。投资的方式可以多样化,比如股票、基金、储蓄型保险等。

投资的目的是让你的钱升值,跑赢通货膨胀。多元化投资可以分散风险,比如买不同国家的股票、不同行业的基金等。这样即使某个领域出现问题,你的整体投资也不会受到太大影响。

结语

《小狗钱钱》虽然是一本面向青少年的理财书籍,但其中的理财思维和人生哲学对成年人同样具有深刻的启发。通过这本书,我学会了如何为梦想存钱、如何提升自信、如何专注于自己擅长的领域、如何关注未来的重要事情,以及如何进行多元化投资。

如果你也对理财感兴趣,或者正在寻找一本简单易懂的理财入门书籍,我强烈推荐《小狗钱钱》。它不仅会让你对金钱有新的认识,还会帮助你更好地规划未来。

如果你想要这本书的电子版或思维导图,欢迎私信我,我会分享给你。

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进与应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值