
深度学习
文章平均质量分 92
郑营
深度学习
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
BP神经网络
1、什么是BP神经网络?人工神经网络是20世纪80年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。 神经网络是一种运算模型,由大量的节点(或称为神经元)之间互相联接构成。由于多层感知机在如何获取隐藏层的权值的问题上遇到了瓶颈。 既然我们无法直接得到隐层的权值,能否先通过输出层得到输出结果和期望输出的误差来间接调整隐层原创 2017-06-15 17:25:03 · 1637 阅读 · 0 评论 -
强化学习及Python代码示例
1、什么是强化学习?Reinforcement learning是机器学习里面的一个分支。它善于控制一个能够在某个环境下自主行动的智能体,通过和环境之间的互动,而不断改进它的行为。2、强化学习的应用领域可以应用到游戏控制、机器人手臂控制、推荐系统、自然语言处理上。3、强化学习的组成部分1、智能体(Agent): 2、动作(Action): 3、状态(State):原创 2017-07-18 10:27:54 · 28506 阅读 · 0 评论 -
对抗生成网络及代码实例
GAN原创 2017-07-18 18:05:26 · 7511 阅读 · 1 评论 -
RNN及其简单Python代码示例
什么是递归神经网络?不同于传统的前向反馈神经网络,RNN引入了定向循环,能够理解那些输入之间前后关联的问题。 RNN的目的是用来处理序列数据。在传统的神经网络模型中,是从输入层到隐藏层再到输出层,层与层之间是全连接的,同一层间的神经元之间无连接。 这种普通的神经网络对于很多问题都无能为力。 例如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。R原创 2017-07-12 17:18:42 · 29780 阅读 · 4 评论 -
CNN及其在lenet-5、Alexnet上的应用
卷积神经网络卷积神经网络的应用1 leNet-5卷积神经网络的应用2 alexNet原创 2017-06-15 17:24:21 · 1106 阅读 · 0 评论 -
浅析神经网络中的激活函数
1、神经网络中为什么要使用激活函数?因为有些数据集并不是线性可分的。比如下面两幅图,左边是线性不可分,右边是线性可分。如果不用一个激活函数来处理,那这个神经网络什么时候也不能把左边这幅图的两种颜色的数据分开。 2、什么是激活函数?激活函数是映射h:R→R,且几乎处处可导。 意思是激活函数就是给输入值做一个映射,使神经元引入非线性因素,这样神经网络可以逼近任何非线性函数,神经网络就可以更好的解决原创 2017-07-07 16:00:02 · 5580 阅读 · 0 评论 -
损失函数
一、什么是损失函数?损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度。 其中损失函数越小,模型的鲁棒性就越好。二、损失函数分为哪几种?1、0-1损失函数它是一种较为简单的损失函数,如果预测值与目标值不相等,那么为1,否则为0。l(yi,yi^)={10yi≠yi^yi=yi^ l(y_{i},\hat{y_{i}})=\left原创 2017-07-08 15:19:27 · 1194 阅读 · 0 评论