摘要
大脑的网络化结构促进了神经元群之间的同步活动。这些通信模式可通过功能成像技术进行映射,从而得到功能连接(FC)网络。虽然大多数研究默认使用Pearson相关性,但科学文献中其实存在许多成对交互统计方法。那么,功能连接矩阵的组织结构如何随成对统计量的选择而变化?在这里,本研究采用包含239种成对统计量的库,对功能连接网络的典型特征进行了基准测试,包括枢纽映射、权重-距离权衡、结构-功能耦合、与其他神经生理网络的对应关系、个体指纹识别以及大脑-行为预测。研究发现,不同功能连接方法存在显著的定量与定性差异。诸如协方差、精度和距离等度量展现出多种理想的特性,包括与结构连接的对应性,以及区分个体和预测行为个体差异的能力。该研究强调了如何通过对特定神经生理机制和研究问题进行成对统计来优化功能连接映射。
引言
大脑是由解剖学连接且持续相互作用的神经元群构成的网络。其功能谱系(从感知到认知再到行动)依赖于区域间的信号传递。在过去的20年里,推断区域间信号传递的主流方法一直是估计功能连接(FC)。首先记录来自不同区域的代谢、电磁或血流动力学神经活动的时间序列,然后估计区域间的系统性共激活,并基于这些信息构建功能连接网络。
构建功能连接网络最普遍的方法是使用无任务或静息态功能磁共振成像(fMRI)。在这种设定下,神经元群的动态是在没有任务指令或外界刺激的情况下记录的;由此产生的“内在”功能连接被认为反映了自发的神经活动。内在功能模式具有高度组织性、可重复性、个体特异性,且与结构连接相关,类似于任务驱动的共激活模式。
与表示解剖连接的结构连接不同,功能连接是一种统计学抽象概念,并不代表物理实体。因此并不存在明确的“真实标准”,如何估计功能连接完全取决于研究者的主观方法选择。尽管已提出多种方法,但最常用的仍然是简单的零滞后线性相关性(Pearson)。然而,关于随机变量间成对交互评估的研究文献极为丰富,包括那些能捕捉到非线性依赖性和时滞交互作用的方法。基于逆协方差的方法便是一个典型例证,这些方法试图通过建模并消除网络对两个节点的共同影响,以突显它们的直接关系。事实上,脑图谱学界越来越倾向于采用能够同时考虑多种潜在机制的分析方法,以便更全面地理解大脑的功能。如何选择成对统计量及其对功能连接矩阵的影响,已成为该领域一个根本性的方法学问题,它限制了我们对大脑功能组织的深入理解,以及开发优化算法来实现结构-功能耦合、个体指纹识别和大脑-行为预测的能力。
在这里,本研究使用239种成对交互统计量对静息态功能连接的多个特征进行全面基准测试。首先,本研究绘制了不同统计量之间的相似性和差异性。随后,探讨了功能连接矩阵的常见特征(如枢纽节点、与物理距离的关系、结构连接等)如何随成对统计量的选择而变化。接下来,研究展示了功能连接组织中的个体差异(包括指纹识别和大脑-行为关系)同样依赖于成对统计量的选择。最后,本研究使用信息论分解方法来研究成对统计量如何捕捉不同的信息流机制。
方法
静息态功能磁共振成像
从人类连接组计划青年成人队列(HCP-YA;S1200版本)中获取326名参与者的静息态功能时间序列数据。结构及功能磁共振数据均采用HCP最小预处理流程进行处理。高分辨率T1加权与T2加权结构图像经过梯度畸变校正并配准至MNI152标准空间。皮层表面通过FreeSurfer的recon-all流程构建。静息态BOLD功能图像(每位参与者4次扫描,每次约15分钟)依次进行时间层校正、梯度畸变校正、头动校正、回波平面成像(EPI)畸变校正,并配准至高分辨率T1加权结构图像。随后采用MSMAll(一种基于多模态表面的功能对齐算法)将BOLD信号映射至fsLR灰质坐标空间以创建表面表征。生理噪声与混杂信号通过ICA-FIX流程去除。
使用pyspi计算成对交互
本研究采用最新开发的Python成对交互统计工具包(pyspi; v0.4.1, commit c19d06)来计算功能连接的替代指标(成对交互统计量,SPIs)。在pyspi计算之前,使用Schaefer图谱对上一步获得的静息态fMRI时间序列进行分区,并执行标准化处理(沿时间维度进行z评分)。从原始SPIs列表中筛选出一组计算时间合理(<30分钟)的SPIs,并对所有参与者及静息态扫描进行SPIs的计算。结果汇总后,进一步剔除存在以下情况的SPIs:(1)方差为零的SPIs,或者(2)至少有1/4的参与者或扫描中出现无穷大/NaN值的SPIs,最终从49种成对交互度量中获得了涵盖6大类别的239个有效SPIs。
计算结果为每个参与者的每次扫描生成了239个节点间矩阵。通过对所有参与者及扫描数据取平均得到各统计量的组共识矩阵(如图1所示)。共生成了239个组共识矩阵(简称组平均度量矩阵)。同时通过计算每个参与者每次扫描的统计量矩阵对之间Spearman等级相关系数来构建统计量相似性矩阵(称之为相似性特征矩阵),再通过对所有参与者及扫描数据进行平均以获得组共识相似性特征矩阵。除非另有说明,否则本研究分析均采用矩阵上三角值,并使用Spearman等级相关系数评估SPIs与其他指标之间的关系。
结构-功能关系
结构网络重建。基于扩散MRI纤维束成像重建结构网络。扩散MRI数据使用MRtrix3软件包进行处理,采用多壳层多组织约束球面反卷积算法建模纤维方向分布。白质纤维束经重建与优化后获得稳健的纤维束权重估计。本研究还使用了一种基于距离的算法来估算组水平的平均边长度分布,从而生成一个二值组共识结构连接矩阵。最后,将该二值矩阵应用于平均结构连接矩阵以获得加权组共识矩阵。
结构-功能耦合评估。根据以往量化结构-功能关系的做法,本研究采用结合网络通信预测因子的多元线性回归模型来量化结构与功能网络之间的对应关系。该方法考虑了网络中的潜在动态过程,相比单独使用结构连接能提供多维的结构-功能对应分析。本研究使用欧氏距离及从组共识结构连接矩阵衍生的五种常用网络通信指标作为预测因子,这些指标涵盖了从集中式的全局最优最短路径到分散式的局部聚焦扩散路径策略。在这种情况下,本研究通过拟合优度(调整R²)来量化结构-功能耦合程度:
其中,WFC表示成对交互度量,Wk表示预测矩阵:欧氏距离、最短路径长度、导航效率、搜索信息、通信效率与扩散效率。
另通过计算结构连接非零元素与成对交互统计量矩阵之间的Spearman等级相关,获得了更直接的结构-功能耦合指标。
网络通信度量
采用区域质心之间的欧氏距离作为节点间物理距离。在量化遍历边成本时,从结构连接矩阵中导出一个连接长度矩阵L,使用单调权重-长度转换公式
。无直接结构连接的区域对在L矩阵中对应无穷大值。
最短路径长度表示从源节点到目标节点的最短距离,基于连接长度矩阵L采用Floyd-Warshall算法计算。Seguin等人将网络导航引入脑网络研究,通过模拟逐步逼近目标节点的行走者,量化非全局优化的路径选择。本研究采用欧氏距离作为距离度量,导航效率取导航路径长度的倒数。搜索信息衡量的是网络上一个随机游走者沿特定路径(不绕行)行进所需的信息量,该度量经改造适用于加权脑网络上的最短路径研究。通信效率测量源节点与目标节点对之间的潜在路径数量,其定义为两节点之间所有路径与游走的加权总和。扩散效率通过计算平均首次通过时间的倒数获得,该指标量化了随机游走者从源节点到达目标节点所需的预期时间(步数)。对于非对称性测量指标,本研究采用矩阵与其转置矩阵的平均值进行对称化处理。
网络指标计算使用以下工具实现:Brain Connectivity Toolbox(https://sites.google.com/site/bctnet)、Brainconn(https://github.com/FIU-Neuro/brainconn)以及netneurotools(https://github.com/netneurolab/netneurotools)。
生物网络
电生理连接网络源自静息态脑磁图记录。从HCP 中获取33名健康受试者的静息态脑磁图数据(每人约6分钟)。使用开源Brainstorm软件(https://neuroimage.usc.edu/brainstorm/)进行预处理。简言之,将原始脑磁图数据配准至高分辨率解剖空间,然后进行陷波滤波(60、120、180、240及300Hz)、高通滤波(0.3Hz)、通道移除以及自动伪影去除。利用信号空间投影技术去除心电、眨眼、扫视、肌电活动(低频1-7Hz与高频40-240Hz成分)和噪声段等伪影。然后,采用线性约束最小方差波束成形器将传感器级数据映射至HCP fsLR4K表面进行源信号估计,并使用Brainstorm的“中值特征值”方法降低可变源深度效应。对fsLR4k大脑表面上每个顶点的时间序列数据,通过主成分分析得到最重要的特征,然后根据Schaefer图谱将这些数据分配到相应的脑区。基于振幅包络相关法计算六个典型频段的脑磁图功能连接矩阵:δ(2-4Hz)、θ(5-7Hz)、α(8-12Hz)、β(15-29Hz)、低γ(30-59Hz)和高γ(60-90Hz),并通过正交化处理校正空间泄漏效应。本研究最终使用的电生理连接矩阵为六个典型频段连接矩阵的第一个主成分。
相关基因表达网络量化了皮层区域之间的转录相似性。从Allen人脑图谱中获取空间分辨的微阵列基因表达数据,经abagen工具箱预处理并映射至Schaefer图谱。简言之,预处理流程包括基于强度的数据过滤、代表性探针选择、组织样本分配、标准化与聚合。最终通过计算标准化基因表达谱的Pearson相关系数,得到区域间相关基因表达矩阵。
层状相似性网络测量区域对之间皮层各层细胞特征的相似性。从白质表面到软脑膜表面的50个等体积层面采样深度分辨强度值,通过BigBrainWarp工具箱获取fsaverage表面强度谱后映射至Schaefer图谱。采用偏相关计算区域间层状相似性网络,并对不同皮层区域的平均强度进行校正。
代谢连接表征皮层区域间葡萄糖代谢的协同波动。本研究记录了26名健康受试者的FDG-PET图像。PET图像使用先前报告的流程进行重建和预处理,为每个受试者生成225个16s的fPET数据。然后对其进行运动校正、时空梯度滤波,并配准至MNI152模板上。最后,将数据映射至Schaefer图谱中,并使用Pearson相关系数计算个体代谢连接矩阵,然后计算组平均矩阵。
受体相似性网络测量区域间受体密度分布的相似性。18种神经递质受体与转运体的PET示踪剂数据来自Hansen等人(2022)的研究及neuromaps(v0.0.1,https://github.com/netneurolab/neuromaps),涵盖多种神经递质系统,包括多巴胺(D1、D2、DAT)、去甲肾上腺素(NET)、5-羟色胺(5-HT1A、5-HT1B、5-HT2、5-HT 4、5-HT 6、5-HTT)、乙酰胆碱(α4β2、M1、VAChT)、谷氨酸(mGluR5)、GABA(GABAA)、组胺(H3)、大麻素(CB1)和阿片(MOR)系统。各PET图像映射至Schaefer图谱后,通过受体谱的Pearson相关系数计算最终的受体相似性矩阵。
指纹识别
个体差异指纹识别采用以下指标进行计算:
对于每对统计量,使用每个受试者BOLD扫描生成的四个矩阵计算参与者内相关性μintra与参与者间相关性μinter的平均值。同时估算合并标准差s。最终得到的可识别性测量指标类似于效应大小统计量。
行为预测
本研究采用了Tian等人(2020)研究中的认知行为表型集。简而言之,从HCP行为数据集中筛选出与警觉性、认知、情绪、感觉运动功能、人格、精神症状、物质使用以及生活功能相关的测量指标。共选取109项指标进行独立成分分析(ICA)。在ICA之前,对原始行为数据进行了标准化(87/109)及混淆变量回归(年龄和性别)。通过自助抽样法和凝聚聚类验证了ICA流程的稳定性与可靠性,随后进行抽样和匹配处理。最终确定五因子模型最能稳健简洁地表征原始数据结构:认知表现、物质使用、吸烟、人格情绪特征及精神健康。详情请参阅Tian等人(2020)的研究。本研究采用交叉验证的310名受试者数据。
对于成对交互测量,本研究使用每个参与者SPI矩阵的上三角值,并取四次BOLD扫描的平均值。为了增强预测稳健性,采用四分位离散系数(QCoD)过滤数据,以提供保守的预测向量表征。首先,计算各参与者SPI指标的QCoD,并排除所有区域对中方差最小的QCoD(绝对最大QCoD<0.01;包括pli_multitaper_max_fs-1_fmin-0_fmax-0.25、pli_multitaper_max_fs-1_fmin-0.25_fmax-0.5、wpli_multitaper_max_fs-1_fmin-0_fmax-0.25)。每次预测时进一步计算第10与第90百分位的QCoD值,仅保留该范围内的区域对以避免极端变异值对预测的干扰。
遵循最佳实践,本研究采用线性核岭回归进行行为预测。建立嵌套k折交叉验证流程:利用内部十折交叉验证循环选择最优正则化参数α,并在外部十折交叉验证循环进行独立测试集划分,以评估最终性能。训练数据与测试数据均仅基于训练集统计量进行标准化以防止数据泄露。最终评估采用预测值与实测值的Pearson相关系数。对余弦核回归、线性岭回归以及LASSO回归进行相同的处理。
整合信息分解(ΦID)
本研究采用整合信息分解(ΦID),一种时间扩展的部分信息分解(PID)框架来评估信息流模式(信息流原子)。
原始PID框架旨在通过联合考量多个源变量与目标变量来研究多元信息。如图5a所示,在双变量场景中,I(R1;X)、I(R2;X)和I(R1,R2;X)表示特定的信息,量化了源变量在给定目标变量X信息时所提供的信息量。PID将信息内容分解为:独特信息成分(Unq(R1;X)与Unq(R2;X))、冗余信息成分(RED(R1,R2;X))及协同信息成分(SYN(R1,R2;X))。其中“冗余”是指两个变量各自提供的信息相同,“协同”表示两个变量共同作用时出现的新信息。
ΦID通过引入时间维度扩展了该框架。以双时间序列为输入,ΦID定义了过去与未来的状态,并衍生出16种信息流原子(初始四个信息原子间的成对转换)。从技术上讲,ΦID需要选择如何定义冗余(同PID)。本研究采用最小互信息的冗余定义。功能时间序列的重叠段用于定义过去与未来状态。基于高斯假设对连续变量计算时延互信息(过去与未来状态间的互信息),为每对原始功能时间序列生成16个信息流矩阵(图5b)。值得注意的是,冗余与时间状态存在多种实现方式,此处采用的是Luppi等人(2022,2024)和Mediano等人(2021)研究中的简明定义。相关资源可在https://github.com/Imperial-MIND-lab/integrated-info-decomp上获取。
为建立信息流原子与成对交互统计量之间的关系(图5c),本研究将前者作为预测因子、后者作为结果变量构建线性模型。采用优势分析来量化存在多重共线性时各预测因子的贡献度。“总优势”统计量用于计算各预测因子相对于全模型拟合优度(R²)的相对贡献。该功能在netneurotools(https://github.com/netneurolab/netneurotools)中实现,它改编自Dominance-Analysis软件包(https://github.com/dominance-analysis/dominance-analysis)。
数据及代码可用性
HCP数据可在https://db.humanconnectome.org/data/projects/HCP_1200上获取。多模态神经生理网络可以通过GitHub访问:https://github.com/netneurolab/hansen_many_networks。行为表型见GitHub:https://github.com/yetianmed/subcortex。原始pyspi输出及singularity容器详见https://osf.io/75je2/。分析代码见GitHub:https://github.com/netneurolab/liu_fc-pyspi。pyspi工具包见GitHub:https://github.com/DynamicsAndNeuralSystems/pyspi。
结果
成对交互统计量的大规模特征分析
本研究首先展示了239个FC矩阵之间的边缘相似性(图1顶部)。成对统计量按其所属的广义模型家族进行分层(例如信息论类、频谱类等)。右侧列出了49个成对测量指标及其变体数量(共239个),这里将其统称为成对统计量。
图1.对大脑静息态功能活动中成对统计量之间的交互关系进行大规模分析。
成对统计量具有高度组织性,可以根据其特点归纳为不同的簇或类别。传统的零时滞Pearson相关被归类为协方差家族,而偏相关则被归类为精度家族,在所有图中都有展示。根据定义,某些统计量彼此高度相似。例如协方差估计量是FC计算中最常用的统计量,它与相关性、距离相关性和互信息估计量的相关性最高。正如预期的那样,这些相似性测量往往与精度、距离和熵等相异性测量呈高度负相关。其他统计量(如频谱测量)则与多数测量指标呈轻度至中度相关。例如,图1底部展示的8个FC矩阵在组织结构上存在明显的差异。这些结果表明,计算FC矩阵的不同方法可能产生结构迥异的网络。
拓扑与几何组织的基准测试
如果不同统计量产生的FC矩阵形态各异,那么这些矩阵是否也具有不同的拓扑和几何特征?本研究首先检查每个矩阵边权重的概率密度(图2a)。一些密度分布呈高度偏态,而其他则相对均匀,这表明在拓扑结构上存在差异,比如是否存在中心节点(枢纽节点)。接下来,本研究考察了每个FC矩阵中各脑区的加权度(脑区×成对统计量;图2b)。虽然大多数统计量存在一些共同的模式(例如背侧注意、腹侧注意、视觉和躯体运动网络中具有较高的加权度),但不同的成对统计量之间也存在显著差异。某些统计量具有空间分布更广的枢纽节点,尤其是跨多个功能区域的节点,例如基于精度的成对统计量就能够在默认模式网络和额顶网络中检测到显著的枢纽节点(图2b)。
图2.拓扑与几何组织的基准测试。
随后,本研究量化了各成对统计量在多大程度上概括了脑网络的两个经典特征:(1)物理距离与边权重的负相关关系;(2)结构连接与FC的正相关关系。对于每个成对统计量,本研究计算了区域间欧氏距离与FC强度之间的相关性(图2c)。需要注意的是,某些统计量被定义为时间序列间的距离(相异性)指标(如精度、成对距离和线性模型拟合值),在这些情况下,较大的值表示时间序列相异,因此预期物理距离与FC呈正相关。总体而言,大多数统计量显示物理邻近度与成对关联呈中度负相关(0.2<∣r∣<0.3),但也有一些显示出较弱的相关性(∣r∣<0.1)。这表明,即使是各种成像与追踪技术、不同空间尺度和物种研究中已报道过的脑网络基本特征,其表现也可能因FC的定义方式不同而发生显著变化。
对于每个成对统计量矩阵,本研究评估了扩散MRI估计的结构连接与FC强度之间的拟合优度(图2d)。在这里,本研究预期二者之间存在正相关,这反映了轴突投射支持区域间信号传递和神经元群协同动态形成的事实。本研究再次观察到统计量间的显著变异,结构-功能耦合度(通过R2测量)范围在0-0.25之间。具有最大结构-功能耦合度的成对统计量包括精度、随机交互和虚部相干性。这些统计量可能特别适合优化结构-功能耦合研究,因其能消除或解释多个脑区之间的共同影响,还能突出展示结构连接如何影响功能相互作用。
与多模态神经生理网络的对应关系
前文展示了即使是与几何和解剖连接的基本关系,也可能因FC估计方法的不同而产生显著变化。在这里,本研究将该问题延伸至探究不同类型的FC如何与反映脑区之间生物相似性的其他网络相关。具体来说,本研究估计了多种形式的区域间相似性:包括基因表达相关性(图3a,源自Allen人脑图谱微阵列表达数据)、分层相似性(图3b,源自BigBrain图谱)、神经递质受体相似性(图3c,源自多种正电子发射断层扫描(PET)示踪剂)、电生理连接(图3d,源自脑磁图(MEG))以及代谢连接(图3e,源自动态[18F]-氟代脱氧葡萄糖(FDG)-PET)。这里的主要问题是每个FC矩阵与在不同时空尺度上估计的区域间生物学关系的对应程度。
图3.与多模态神经生理网络的对应关系。
本研究通过图3展示了每个功能连接矩阵与各生物区域间相似性矩阵之间的关联性。从图中可以看出,功能连接矩阵与神经递质受体相似性以及电生理连接性之间的相关性最为显著。这一结果与既往研究一致,并可能反映了具有相似化学结构特征的区域在神经调节上受到相似影响,从而呈现出一致的电生理活动模式。在评估成对交互统计矩阵与“认知相似性”矩阵之间的对应关系时,也发现了类似的结果。尽管理论上两种方法测量的应是相关生物过程,但出乎意料的是,本研究未发现fMRI估计的功能连接与FDG-PET估计的代谢连接之间存在显著相关性。最后,本研究揭示了一个反复出现的规律,即基于精确统计估计的功能连接通常与多种生物相似性网络保持高度一致。
量化个体差异
静息态FC的一个常见应用是研究个体差异。在此,本研究探讨了使用不同成对统计量估算的功能连接在以下方面的适用性:(1)个体识别(指纹图谱);(2)认知行为个体差异预测。图4a展示了不同统计方法计算的功能连接矩阵的参与者可识别性。可识别性指数是一种衡量效应大小的指标,≥0.8视为效应量较大。与先前的报告一致,本研究发现协方差度量(如Pearson相关)总体表现良好(可识别性~1.5)。基于精度的统计量表现最优(可识别性>2.1),这与前文结果相符。关于功能连接模式在参与者和扫描间是否持续存在的广义问题,有时也可以用重测信度来表示。为完整起见,本研究还使用组内相关系数进行重测分析,结果与既往研究一致且类似于指纹可识别性。值得注意的是,基于精度的统计量具有相对较低的重测信度,这表明其更擅长捕捉个体差异而非相似性。
图4.个体差异量化结果。
本研究进一步评估了不同功能连接统计量对个体认知和行为差异的样本外预测效能。参照Tian等人(2020)提出的方法,本研究对HCP数据集中的109项指标应用独立成分分析(ICA),从而获得五因子解。随后在嵌套的十折交叉验证中采用核岭回归来根据个体功能连接矩阵预测各因子得分。图4b显示了各测试折中实证得分与预测得分之间的平均相关性。从图中可以看出,对于认知和吸烟这两个因子的预测效果较好,而对于物质使用和精神健康的预测效果较差,这与先前的研究报告一致。对于个体指纹识别中表现良好的统计量(如协方差、精度和信息论统计量)在预测认知和行为时也通常表现良好;同样,指纹识别中表现不佳的统计量(例如,频谱统计量)在此也表现不佳。综上所述,可识别性和预测准确性上的显著差异表明,功能连接统计量的选择应根据不同研究问题进行定制或优化。
功能连接矩阵的信息流模式分解
本研究聚焦于功能连接矩阵与其他区域间关系(如结构连接、空间邻近性、生物相似性)以及外源性指标(如个体身份或行为)的关联。在这里,本研究探讨了使用不同统计量计算的功能连接是否反映了不同的信息流模式。例如,本研究评估了“协同”交互(两个信息源共同提供单独无法获取的新信息)与“冗余”交互(各信息源提供相同信息)的差异。最新信息论框架可将成对交互分解为协同、冗余和独特信息(即信息原子,图5a)。也就是说,对于每对皮层区域(视为信息源),我们可以量化从其既往活动预测未来神经活动的信息量,并判别这些信息是冗余传递、独特传递还是协同传递。此外,还可以进一步探讨这些信息的传递方式是否随时间变化,从而产生不同类型的信息动态。
图5.功能连接矩阵的信息流模式分解。
图5b展示了信息分解得到的16种信息流模式,并进一步估算了每种模式对各功能连接矩阵的贡献度(图5c)。本研究发现,经典统计量(如协方差、精度和互信息)主要反映了“冗余信息保持冗余”的模式;而某些频谱统计量(如定向传递函数和偏相干性)则更侧重于反映“信息由单一区域独家提供”这一模式。尽管上述两种情况均属于信息存储模式(即信息传递方式随时间保持一致),但实际上还存在更加丰富的信息流模式。例如,在相位滞后值中观察到信息的迁移、复制与去重;在传递熵和协整分析中发现信息的加密与解密(亦称向下/向上因果关系)。这些结果表明,虽然大多数统计量捕获的是冗余信息存储,但实际上存在着一种更广泛的信息流模式,这些模式可以通过特定的成对统计方法有选择性地进行采样。
结论
静息态功能连接(FC)已成为当前应用最广泛的脑成像表型之一。尽管其应用广泛,但功能连接的操作性定义尚不统一,目前大多数研究组默认采用简单的零滞后线性相关分析方法。本研究通过使用一个大型成对交互统计方法库,系统性地对功能连接矩阵的网络结构、生物学基础以及大脑-行为关联进行了基准测试。研究结果揭示了一系列对大脑组织不同特征敏感的分析方法,展示了丰富的方法学景观。总的来说,随着功能连接作为神经影像表型的应用逐渐增多,本研究结果为未来的科研工作提供了重要的基础,帮助研究人员根据其研究的神经生理机制及具体研究问题来选择最适合的功能连接分析方法。
参考文献:Liu, ZQ., Luppi, A.I., Hansen, J.Y. et al. Benchmarking methods for mapping functional connectivity in the brain. Nat Methods (2025). https://doi.org/10.1038/s41592-025-02704-4
小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~