摘要
由于视觉工作记忆(WM)存在严格的容量限制,清除其中不再相关的信息对其功能至关重要。既往研究通过“ABC回溯线索”工作记忆任务,已经证明了信息清除可通过不同的方式实现:一种是简单地将注意从新近无关的记忆项目(IMI)撤离(即“被动清除”);另一种是从工作记忆中“主动”清除IMI。本研究旨在探讨主动清除背后的神经机制,并记录了被试在执行ABC回溯线索任务时的脑电(EEG)信号。具体来说,本研究检验了“劫持适应模型”(hijacked adaptation model),该模型认为主动清除是通过大脑的自上而下调控机制实现的,即通过调节感知神经回路增益来降低与待清除信息相关的感知通道敏感性。行为分析显示,相较于被动清除,主动清除会导致以IMI为中心的熟悉度下降。在神经层面,本研究聚焦于任务中对应主动清除触发阶段及其影响的两个时段。关于触发阶段,本研究观察到主动清除比被动清除产生了更强的前向后(从大脑前部向后部传播的)行波;在清除所产生的效应方面,通过事件相关电位(ERP)和后向前(从大脑后部向前部传播)行波的评估结果发现,主动清除会减少对任务无关刺激的反应,这表明主动清除导致了以IMI为中心的感知神经回路的兴奋性降低。
引言
工作记忆(WM)的标志性特征是其快速更新能力,能根据环境瞬时变化和/或行为目标需求“动态”添加新信息。由于WM存在严格的容量限制,这种更新过程通常被认为也需清除不再相关的信息。然而,实证证据表明,清除往往并不彻底。例如,当前试次项目的回忆常常会受到前一个试次的影响。在神经层面,也有大量证据表明不再相关的信息未被完全清除,前一个试次的信息会持续影响当前试次。这些发现表明,大多数情况下的更新可能采用了一种默认策略,即“被动清除”(仅将注意力从不再相关的信息中撤离),以致于在认知系统中仍残留一些信息痕迹,并可能干扰后续的行为。
然而,有证据表明更新可能涉及从WM中主动清除信息。在使用“ABC回溯线索”WM任务的行为研究中,被动清除导致了吸引性序列偏差,而主动清除却产生了相反的效应:排斥性序列偏差。同样,在WM+辨别双任务中,鼓励被动清除的条件产生了吸引性序列依赖,而鼓励主动清除的条件则产生了排斥性序列依赖。这些序列依赖效应符号的反转(即从吸引性到排斥性或反之)表明,主动清除信息的过程可能会导致IMI发生变化,甚至改变信息本身的影响,从而使得它在后续的WM加工过程中起到相反的作用。
这一观点得到了一项功能磁共振成像(fMRI)研究的支持,该研究采用回溯线索的WM任务:当项目变为不再相关后,其多变量表征发生了反转。计算模型显示,这一结果最好的解释是通过一种机制,即与该信息相关的感知回路的增益(敏感度)被下调了,这种机制类似于感官适应原理。
序列依赖的排斥性偏差被认为源于当前试次项目编码期间的感觉适应。综合这些发现,本研究推测与主动清除相关的排斥效应可能涉及一种类适应机制。这里将此机制称为“劫持适应”(hijacked adaption)模型,用以解释WM中信息的主动清除过程。
本研究旨在检验“劫持适应”模型的行为与神经预测,该模型认为WM中信息的主动清除是通过自上而下的调节作用,作用于与该信息相关的感知通道来实现的。为此,本研究记录了被试在执行ABC回溯线索WM任务时的EEG活动,重点分析了试次中的两个关键时段:主动清除过程的触发阶段,以及后续清除操作所产生的效应阶段。
材料与方法
研究对象
共有27名来自威斯康星大学麦迪逊分校社区的被试参与了本次研究。所有被试均签署了知情同意书。其中1名因未遵循任务指令被排除分析,另1名因表现不佳(平均绝对回忆误差超过组平均值2个标准差以上)被排除。因此,最终分析包含25名被试的数据(19名女性,6名男性,平均年龄=23.8岁,年龄范围=19-30岁)。
刺激材料
被试坐在光线昏暗的房间里,离显示器的观看距离为50cm。实验中使用下巴托固定头部位置。记忆样本刺激为定向光栅(半径=3°,空间频率=1周期/°,对比度=0.5,随机相位),呈现在虚拟圆圈上的六个可能位置(30°、90°、150°、210°、270°、330°),该虚拟圆圈的半径为7°。刺激为灰色背景(RGB=128,128,128)上显示的白色光栅(RGB=255,255,255)。提示刺激(Ping)为同时出现在六个位置的白色同心圆靶(半径=3°,空间频率=1周期/°,对比度=1,随机相位)。该Ping刺激旨在对视觉感知相关神经回路提供强烈但朝向中立的刺激。回溯线索是与样本半径相同的白色圆圈,探测刺激为黑色响应刻度盘(未填充的黑色圆圈,黑线对应圆的直径),其半径相同且具有随机起始方向。在每组试次中,屏幕中央始终显示一个十字注视点。
实验设计
被试在一个session中完成6个block的ABC回溯线索任务(图1),前3个block为“无重叠”试次,后3个block为“重叠”试次。每个block包含120个试次,耗时约27分钟。要求被试在每40个试次后(约9分钟)自主暂停,暂停期间需保持头部稳定。每个试次以中央注视点开始(750ms),随后在不同位置呈现两个样本光栅(项目A和B)(1000ms)。被试需在初始延迟阶段(延迟1;1500ms)记住这两个样本,随后回溯线索出现在其中一个光栅位置(750ms),提示该项目可能在试次结束时被测试。(被试被明确告知未提示项目不会被测试,从而使其成为一个IMI任务)。第二次延迟(延迟2.1;2000ms)后,呈现提示刺激250ms,接着是延迟2.2(1000ms),然后呈现另一个样本光栅(项目C,500ms),延迟3(1000ms),最后在回溯线索项目或项目C位置(各50%概率)呈现一个探测刺激。该探测刺激显示3000ms,被试在此期间需通过鼠标调整响应刻度盘的方向来回忆被探测项目的方向,随后呈现误差度数的反馈界面(1000ms)。试次间隔在500-700ms之间随机变化。
图1.实验流程示意图。
从6个基本方向(20°、50°、80°、110°、140°、170°)池中随机抽取(可重复)项目A、B、C的方向,并添加-3°至3°的随机抖动。A和B的位置从六个可能位置中随机选择两个。重要的是,在前3个block (无重叠条件)中,项目C随机出现在未被A或B占用的四个位置之一,该设定在预实验指导语中已明确说明。在后3个block (重叠条件)中,项目C始终出现在与IMI相同的位置。该操作的逻辑在于:由于重叠条件存在IMI与项目C更强的线索冲突,被试会有动机在回溯线索指定后主动清除工作记忆中的IMI。相比之下,无重叠条件下因项目C总出现在新的位置,IMI的潜在干扰较弱,被试可能采用默认的被动清除策略。需要注意的是,实验未明确指示使用主动或被动清除策略。重叠与无重叠条件之间的位置差异仅在被试完成前3个block后才向他们解释,该程序细节旨在减少被试在无重叠试次中采取主动清除策略的可能性。
行为分析
计算每个被试在各条件下的平均绝对回忆误差。采用双尾配对t检验评估条件间的表现差异。本研究采用目标混淆竞争模型(TCC)的变体来追踪IMI的变化情况。TCC模型假设被试在每个试次中的报告是基于反映WM中所有项目影响的综合熟悉度分布(示例见图2A)。TCC通过参数d'来估计项目的记忆强度,d'代表与该项目相对应的信号强度。原始TCC模型仅适用于WM中的当前项目且d'被限定为非负值,本研究扩展了该模型以包含假定被清除项目的d'估计,因此需修改模型允许d'取负值。具体而言,在ABC回溯线索任务中,被动清除IMI预计会留下小而正的d'(对应于未完全清除的记忆痕迹),主动清除IMI则预计会产生一个负d'。根据劫持适应模型,IMI的主动清除是通过降低与其方向相关的感官通道的增益来实现的,因此项目C的后续编码会受到影响,使得最终熟悉度分布中接近IMI方向的信号会减弱(见图2B)。重叠条件下的负IMI d'与该模型一致。
图2.劫持适应模型的预测示意图。
TCC模型考虑了刺激项目间的心理相似性,并假设WM中的每个项目都会生成一个分级的熟悉度信号。对于方向性,0°记忆项目会增强从-90°至90°之间所有可能方向的熟悉度,而这种增强幅度取决于每个方向与0°的相似度(图2A)。在应用TCC模型时,本研究使用了在先前研究中估算的方向性心理相似性函数。为了评估IMI主动清除是否会影响项目C的加工,本研究选择了需要回忆项目C的试次,并且这些试次占所有试次的一半(50%)。每个试次的熟悉度分布被建模为探测项目(即项目C,使用probed d'估算)与IMI对应信号(使用IMI的d'值估算)的熟悉度之和。probed d'和IMI d'均可取负值。在计算d'值时,本研究将所有被试的数据进行合并,然后进行TCC分析。采用马尔可夫链蒙特卡洛方法(MemToolbox中的MCMC函数)分别对重叠与无重叠条件下的数据进行拟合。从收敛后的15000个样本中提取数据,以计算参数估算值的95%置信区间(95% CI)。然后,计算各条件下的95% CI以进行条件间比较。此外,通过计算每组样本中大于或小于0的样本比例,并将结果乘以2来计算双尾p值。
脑电记录与预处理
使用actiCHamp Plus系统(Brain Products)从60个电极处记录头皮EEG,采样率为1000Hz。电极位置基于扩展的10-20国际系统。在线参考为前额电极(FCz)。预处理与分析使用EEGLAB、Fieldtrip和自定义的MATLAB脚本完成。数据首先降采样至500Hz,然后进行1-100Hz的带通滤波。使用EEGLAB的pop_rejchan函数检测并剔除坏导。随后将数据进行平均重参考。将连续EEG数据分割为13.25s的时段(从样本呈现前1.25s至反馈结束),并使用EEGLAB的pop_autorej函数检测并剔除包含伪迹的时段。使用主成分分析进行降维,并应用独立成分分析(ICLabel)去除眼动、肌电和线噪声等成分。最后,对坏导进行插值处理。
ERP分析
本研究考察了由回溯线索和提示刺激(ping)诱发的ERPs。对于所有ERP分析,EEG信号在试次开始前750ms的时间段内进行了基线校正。在Fieldtrip中应用基于聚类的置换检验来检验两种条件间回溯线索诱发的ERP差异。首先进行配对t检验,识别p<0.05的所有数据点,将时空相邻显著点归入同一簇并计算各簇的总t值。最后,将总t值与1000次置换数据(即随机改变条件标签)所生成的最大总t值进行比较,并使用双尾α=0.05确定显著簇。对于提示诱发响应,本研究重点关注后部传感器(P7、P8、P5、P6、PO7、PO8、PO3、PO4、POz、O1、O2、Oz),因为劫持适应模型预测负责编码刺激方向的感觉回路会发生变化。采用基于时间簇的置换检验(1000次随机置换,双尾α=0.05)来评估统计显著性。
行波分析
在回溯线索起始和提示起始锁时的EEG时段评估前向(从后脑到前脑)与后向(从前脑到后脑)行波。行波估计采用基于二维快速傅里叶变换(2D-FFT)的方法。使用四个连接额枕电极的前后轴(图5A;[PO7, P5, CP5, C5, FC5, F5, AF3]、[O1, PO3, P3, CP3, C3, FC3, F3]、[O2, PO4, P4, CP4, C4, FC4, F4]和[PO8, P6, CP6, C6, FC6, F6, AF4])。对于每条电极轴采用500ms的时间窗,用各电极电压构建7(通道)×250(时间点)的图像,然后对图像进行2D-FFT。所得频谱的上/下象限分别量化了后向和前向行波的强度,其中x轴对应行波的时间频率,y轴对应行波的传播速度。然后,对于每个时间频率,提取了每个象限中的最大值,从而得到该时间窗的行波功率向量。
然后,将时间窗滑动50ms并重复该过程,最终为每条电极轴和每个方向(前向vs后向)生成一个行波功率的时频矩阵。功率矩阵用基线矩阵进行校正。基线矩阵通过随机打乱电极顺序,并重复50次上述过程生成时频矩阵,然后对结果进行平均来构建的。最终,行波功率计算为观测功率与基线功率的分贝比:
前向波与后向波分别通过与回溯线索起始时刻和提示起始时刻锁时的时段进行估算(注意:这些分析允许前向波与后向波在同一时间段内沿同一电极轴同时出现)。在进行条件间比较时,首先对四个电极轴的行波功率取平均值,随后采用基于聚类的置换检验(1000次随机置换)来检测显著性聚类。
结果
行为结果
平均绝对回忆误差表明被试遵守了任务指令(SD=12.540±3.069°)。重叠条件下的回忆误差(SD=11.960±3.117°)显著低于非重叠条件(SD=13.120±3.195°;p<0.001)。
将TCC模型应用于被要求回忆项目C的试次时,发现该项目在两种条件下均诱发了强烈的熟悉信号(图3;非重叠探测d'=2.532,95%CI=[2.462,2.604],p<0.0001;重叠探测d'=2.864,95%CI=[2.785,2.946],p<0.0001)。重叠条件下的探测d'显著高于非重叠条件(差异CI=[0.226,0.448],p<0.0001)。非重叠条件下IMI的d'值虽小但显著大于零(图3;非重叠IMI d'=0.252,95%CI=[0.159,0.341],p<0.0001),表明试次结束时仍存在IMI的残留痕迹。重叠条件下的IMI d'数值为负(重叠IMI d'=-0.096,95%CI=[-0.208,0.016],p=0.0888),且显著低于非重叠IMI d'(差异CI=[-0.4925,-0.2046],p<0.0001)。
图3.参数估计直方图。
脑电结果
回溯线索诱发电位
两种条件下,头皮电位图均显示中央中线电极处存在较大的负波。比较这8个中央中线电极(Fz、F1、F2、FC1、FC2、C1、Cz、C2)的ERPs均值发现,重叠条件下的ERP波幅更大,这种差异始于回溯线索出现后的初始负偏转阶段并持续约250ms(图4;回溯线索出现后208至456ms,p=0.002)。
图4.以回溯线索出现为基准的额中线电极ERPs,灰色阴影区域表示条件间存在显著差异的时段。
与回溯线索锁时的行波
前向行波分析显示,每种条件下的低频(<10Hz)范围内存在持续增强的前向波,而β频段(20-26Hz)则存在持续抑制的前向波,这种现象贯穿延迟期1、回溯线索和延迟期2.1全程。两种条件在回溯线索结束时(即3.25s)均出现低频前向波幅度的短暂增强。两种条件之间的差异仅出现在回溯线索出现后约800ms开始的一个短暂时段内,此时非重叠条件下β频段持续抑制的前向波比重叠条件下的下降更显著(图5D左,p=0.01)。
图5.通过四条电极轴平均(A)获得的EEG前向与后向行波,以回溯线索起始(2.5s处虚线)为基准,展示了非重叠(B)与重叠条件(C)下的分析结果。(D)显示了条件间的差异,显著聚类区域用黑色轮廓标出。左列为前向波,右列为后向波。
后向行波分析显示两种条件在两个频段中均存在持续增强的相似模式:一个横跨高α/低β频段,另一个强度较弱,位于β频段的较高频率范围(约20-25Hz)(图5B右和5C右)。(注意,不能排除高频后向波可能是低频成分谐波伪迹的可能性。)在两种条件下,这些后向波在回溯线索出现之前尤为显著。这些后向波的功率在重叠条件下更强,无论是在回溯线索相关时段(在α/低β频段,从线索出现前约700ms持续至出现后约2s,图5D右,p=0.002),还是在线索出现后不久的高β频段(约200-750ms,图5D右,p=0.03)。
Ping诱发电位
在两种条件下,ping刺激在后部电极上诱发了较大的波幅,其中在非重叠条件下,从首个负偏转开始表现出更大的负波幅并持续约135ms(图6;ping出现后220-356ms,p=0.028)。为了评估该差异更符合“更大波幅的ping诱发响应”还是“条件间的直流偏移”,本研究计算了每个被试初始负偏转与后续大幅正偏转的峰值距离。若差异完全由直流偏移引起,那么两种条件的峰值距离应该相同。为此,负峰定义为组平均负峰前后200ms时间窗内的最低电压,正峰为组平均正峰前后200ms时间窗内的最高电压。对两种条件之间峰值距离的统计比较显示,差异接近但未达到显著性阈值(p=0.0594)。
图6.以ping出现为基准的后部电极ERPs,灰色阴影区域表示条件间存在显著差异的时段。
与Ping锁时的行波
前向行波被认为对应于感知输入的自下而上的加工。因此,劫持适应模型预测,在鼓励主动清除的block中,Ping诱发的前向波会减弱。与这一预测一致的是,视觉ping在两种条件下均从出现后约250ms开始诱发显著的θ频段(约4-8Hz)前向波(图7A左和7B左)。与非重叠条件相比,该行波在重叠条件下的强度有所减弱(图7C左)。
图7.以Ping开始为基准的EEG前向与后向行波,并展示了非重叠(A)与重叠条件(B)下的结果。(C)显示了条件间差异,左列为前向波,右列为后向波。注意前/后向波的标尺不同。时间轴上6.5s附近及之后的显著差异聚类可能由6.5s出现的项目C引起。绘图规范同图5。
在两种条件下均观察到持续增强的后向行波,横跨高α/低β频段(约10-15Hz),并从延迟期2.1持续到延迟期3,且在ping刺激后出现短暂中断(图7A和B)。这一现象可能是对在图5B和C中基于回溯线索锁时分析中所观察到的后向行波的延续。在重叠条件下,该后向波在ping刺激相关时段的功率更强(在α/低β频段,从ping刺激出现前约650ms到出现后约750ms,图7C右,p=0.002)。此外,在项目C出现时刻(6.5s)对应的高β频段(约23-28Hz)也观察到了显著差异(图7C右,p=0.016)。
结论
综上所述,通过脑电记录和行为数据的TCC建模,本研究证实了工作记忆信息的主动清除与额中央电极表现出的自上而下控制过程有关。该过程导致后部电极区的兴奋性降低(可能与后部知觉回路的增益下调相关),并在行为层面表现为某些特定的刺激在大脑中引发了“熟悉感”水平的降低,这个“熟悉感”会影响我们做出识别决策的过程。这些发现为“劫持适应作为工作记忆主动清除机制”的理论提供了新的证据支撑。
参考文献:Shan, J., & Postle, B. R. (2025). EEG correlates of active removal from working memory. Journal of Neuroscience, e2414242025. https://doi.org/10.1523/JNEUROSCI.2414-24.2025
小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~