Nature子刊 | 低频振荡(θ与α)——认知稳定性与灵活性的神经关联

摘要

认知加工依赖于大脑平衡信息编码灵活性与信息保持稳定性的能力。本研究通过三个视觉空间工作记忆任务的脑磁图数据集探讨了这一动态过程。在所有任务中,我们在θ(4-8Hz)和α(8-14Hz)频段中识别出了四个不同的网络,并基于这些网络定义功能状态。状态之间的最佳转换速率与更好的认知表现相关。其中两个状态分别对应灵活性与稳定性:一个是由后部θ波主导的“编码状态”和一个由背侧α波主导的“维持状态”。本研究还在一个具有生物真实皮层连接性的计算模型中模拟了这些状态。这个包含脉冲层与振荡层(通过相位-振幅耦合相互作用)的模型,揭示了频率与空间区域如何调节信息流动。研究结果表明,通过大规模网络之间的选择性状态转换来优化信息流的认知控制机制,可实现视觉表征的稳定性与灵活性。

引言

认知神经科学的核心问题在于大脑如何平衡稳定性与灵活性。即便是在执行扫视这类基本任务时,大脑也需在灵活采集新信息与保持眼动期间视觉稳定性之间切换。在视觉空间工作记忆任务中,这种调控尤为重要:稳定表征用于信息维持,而灵活性则服务于信息编码与更新。实现这种平衡可能需要大脑在不同功能状态之间切换,从而对相同的刺激产生状态特异性的反应。阐明这些状态的产生机制是理解认知动态本质的关键。

低频的大规模同步现象可能是解释功能性脑状态背后的机制之一。小鼠研究表明,从静息、外界刺激响应到社交行为等一系列大脑活动,均可通过一些低维的时空激活模式来解释。人类研究也发现,从眼动控制到复杂认知任务的一系列感知和认知过程中,已观察到类似的θ(4-8Hz)和α(8-14Hz)频段的大规模低频活动。

尽管这些低频网络的作用尚未完全阐明,但有研究认为它们可能通过相位-振幅耦合影响高频神经脉冲。例如,脑磁图与脑电图(M/EEG)研究显示,θ波和α波相位通常与γ波振幅耦合。颅内记录也证实了低频振荡与高频γ波之间的关联。因此,低频同步网络可能调控着高频信息流的传输。

在这里,本研究通过两个独立的脑磁图数据集,探究了视觉空间工作记忆任务中低频同步对认知状态的作用。基于θ和α频段的滤波数据,本研究首先采用独立成分分析(ICA)在个体水平定义同步网络,然后通过跨被试聚类获得群体共有的时空活动模式,并据此定义大脑状态。

首先通过检验状态转换与认知表现之间的关系,建立已识别状态与认知控制之间的关联。然后,分析任务维持与编码阶段特异性激活的状态,并将其与认知稳定性和灵活性联系起来。最后,通过构建全脑计算模型来探讨同步状态与行为反应的因果机制。模型包含具有生物真实连接性的振荡控制层(使用Kuramoto模型模拟)与脉冲信息层(通过脉冲频率模拟),通过简化基底节-丘脑-皮层环路输入触发同步。使用该模型,本研究评估了振荡层中的同步是否能够通过相位-振幅耦合影响脉冲层中的信息流动,同时考察了同步的空间分布和频率对信息流的影响。

方法

HCP数据集

受试者及其扫描阶段。人脑连接组计划(HCP)包含来自1200余名青年受试者的功能性与结构性磁共振成像(MRI)、扩散加权成像以及遗传和行为数据。其中83名受试者(45名男性)在脑磁图(MEG)扫描仪中完成了工作记忆任务。在这些受试者中,17人年龄为22-25岁,33人26-30岁,33人31-35岁(具体年龄与性别信息见源数据)。受试者在三小时扫描期内依次完成静息态、语言处理任务和运动任务,每项任务均进行两次扫描记录。

实验任务。采用双负荷条件的N-back范式(图1a)。第一种条件为样本匹配(0-back),要求受试者判断呈现图像是否与预设目标图像一致;第二种条件(2-back)需要受试者判断当前图像是否与两步前的刺激图像匹配。刺激材料包含工具与面孔两类,呈现时长为2000ms,随后是500ms的注视点。每个block包含10个同类刺激(纯工具或纯面孔),每种条件与刺激组合下各进行8个block。

MEG数据采集与预处理。采用全头型MAGNES 3600(4D Neuroimaging)系统采集MEG数据并进行预处理。通过计算通道间相关系数与方差比识别异常通道,基于z分数指标与独立成分分析(ICA)迭代法检测异常时段并剔除。随后进行ICA分解,剔除非脑源性成分,降采样至508.63Hz。最终将数据分割为-150至2650ms的独立试次,首尾各添加150ms的时间窗以消除后续滤波的边缘效应。

MRI采集。使用西门子3T Connectome Skyra扫描仪采集T1加权结构像(1×1m2)。

4名受试者数据集

受试者及其扫描阶段。数据集包含2名男性和2名女性(年龄分别为21/21/22/26岁),所有受试者均签署了知情同意书,研究方案获得了瑞典伦理委员会的批准。每个受试者在8周内分7个时间点(第1/2/4/10/19/29/39天)进行扫描,间隔期间受试者居家完成一个认知训练程序。

实验任务。受试者在扫描期间执行两项工作记忆任务与一项对照任务。第一个任务是工作记忆网格(图1b):呈现4×4网格,网格上的位置会亮起,受试者的任务是记住刺激的顺序位置。该任务包含40个5刺激试次与40个6刺激试次,刺激呈现300ms,间隔1000ms。第二个任务是异形筛选(Odd One Out,图1c):序列中的每个刺激包含三个形状(两个相同/一个相异),受试者需记忆异形位置(左/中/右)。该任务包含40个5刺激试次。同样,刺激呈现300ms,间隔1000ms。第三个任务是作为对照的言语识别任务(图5c):呈现一个包含5-6个字母的序列,间隔1300ms),要求受试者听字母Q并在序列结束后进行按键反应。如果序列中包含字母Q,则按“yes”键,否则按“no”键。

MEG数据采集与预处理。使用306通道全头型Elekta Neuromag TRIUX系统采集MEG 数据,采样率为1000Hz。使用MaxFilter软件进行时域信号空间分离(tSSS)以减少外部伪迹,采用ICA去除心电与眼动伪迹,以及采用50Hz陷波滤波消除工频干扰(基于MNE-Python工具包,https://doi.org/10.5281/zenodo.592483)。最终,将数据分割为包含试次及双侧300ms边缘窗的时段。

MRI采集。使用GE SIGNA Premier 3T扫描仪采集T1加权结构像(1×1m2)。

干扰项数据集

受试者及其扫描阶段。该干扰项数据集包含17名21-41岁受试者的结构MRI和MEG任务数据。其中4名受试者因无法识别θ网络被剔除,该操作在所有后续状态分析前完成,最终保留13名受试者用于分析。

实验任务。该工作记忆(WM)任务是一个包含干扰项的序列性视觉工作记忆任务(vsWM)。每个试次开始时,会有一个预提示,指示该试次是否含干扰项(干扰项试次占比50%)。随后依次呈现4个条形刺激(各呈现500ms,间隔500ms),每个条形刺激具有随机朝向并标有彩色圆点,受试者需记住条形刺激的朝向与颜色。在干扰项试次中,第2、3个条形刺激为干扰项,无需记忆。刺激呈现后是750ms的注视点阶段,随后注视点变色提示需回忆的条形刺激序号。再过750ms后,受试者需报告目标条形刺激的朝向。实验共400个试次,每40个试次为1个block。

MEG数据采集与预处理。MEG数据使用与4名受试者数据集相同的设备采集,且已完成预处理。采用MaxFilter进行时域信号空间分离(tSSS);通过独立成分分析(ICA)去除眼动与肌电伪迹,并采用半自动方法去除心电伪迹(均通过MATLAB工具包Fieldtrip完成)。将数据进行分段并降采样至250Hz,试次时间窗为-2000ms (预提示起始)至6000ms (回忆终止),首个条形刺激在500ms时呈现(见图6)。

MRI数据采集。采用西门子3T磁共振扫描仪采集T1加权结构像(1×1m2)。

所有数据集的MEG处理通用流程

解剖重建与分区。使用FreeSurfer(http://freesurfer.net/)进行解剖重建,随后采用Schaefer图谱将皮层划分为200个脑区。

源信号重建。基于MNE-Python的dSPM方法将MEG信号从传感器空间投影至源空间:采用间距5mm的均匀偶极子分布,偶极子方向固定为垂直于软脑膜表面。对于4名受试者数据集,噪声协方差矩阵通过各试次首个刺激呈现前1000ms的数据进行估算;HCP与干扰项数据集则使用全部任务数据构建噪声协方差矩阵(均经正则化处理)。为了将源时间序列合并为区域时间序列,首先优化聚合算子以最大化模拟数据与其重建信号之间的相似性。

Morlet小波滤波。使用MNE-python进行6Hz与10Hz的Morlet小波变换。每个小波的周期数设置为5,并且滤波后的数据被降采样至中心频率的五倍。最后,剔除试次两端的时间窗。

网络

网络构建。从复数形式滤波数据中提取绝对值,按频率、扫描时段、受试者及任务进行标准化。为分离各频率的独立信号源,采用Python工具箱scikit-learn进行ICA分析(成分数量因受试者及频率而异,范围2-5个)。ICA时间序列按扫描时段、受试者和任务进行试次间平均,最终连接各独立成分的时间点数据。使用k均值聚类(同样基于scikit-learn)将各时间点归入4个簇。在每个数据集中分别进行聚类。

网络比较。采用余弦相似度比较网络:向量u与v之间的余弦相似度定义为其范数之间的点积

,值为0表示向量正交且独立,值为1表示向量完全同向。本研究中向量为各受试者、扫描时段及任务推断的ICA权重向量。在比较不同扫描时段的相似度时,保持受试者和任务不变;在比较不同任务的相似度时,保持扫描时段和受试者不变;在比较不同受试者的相似度时,则保持扫描时段和任务不变。

结果

数据

本研究分析了两个独立的MEG数据集,以识别支持视觉空间工作记忆(vsWM)的低频同步网络。第一个数据来自人类连接组计划(HCP,https://www.humanconnectome.org/)的83名受试者,包含其在MEG扫描期间执行2-back任务时的脑磁和行为数据(图1a)。每个2-back试次中会呈现一张图片,受试者需判断当前图片是否与两个试次前的图片匹配。匹配与不匹配分别对应不同的按键反应。

图1.HCP与4名受试者数据集中的实验任务。

第二个数据集包含4名受试者在执行两种不同vsWM任务时的重复测量数据:工作记忆网格(WM-Grid,图1b)和异形筛选(Odd One Out,图1c)。在WM-Grid任务中,受试者需记忆网格上按序呈现的5-6个圆点的位置顺序。全部序列呈现完毕后,网格每个位置会随机显示1-16的数字,受试者需口头报告序列中每个网格位置对应的数字。在Odd One Out任务中,每个试次呈现由五个刺激组成的序列。每个刺激包含三个形状(两个相同/一个相异)。受试者需记忆每个刺激中异类图形的位置,并按顺序报告这些位置。通过三个按键(1-3)进行反应,分别对应三个可能的位置。该数据集在八周内采集了每位受试者6次Odd One Out任务记录和7次WM-Grid任务记录。HCP数据集适用于研究个体间相似性,而4名受试者数据集则用于评估个体内跨任务与时间的可靠性。

频率分析

两个数据集在θ和α频段均显示出全局同步模式,但具体的同步峰值位置稍有不同(图2a)。图2b、c展示了两任务在这两个频段内的平均全局同步的时间动态特征。使用锁相值的虚部计算同步性。

图2.HCP数据集和4名受试者数据集的α与θ振荡活动。

网络识别

本研究使用独立成分分析(ICA)从每位受试者滤波后的试次数据中分离α和θ频段的独立信号。4名受试者数据集采用刺激呈现期(0-6.5s)的数据,HCP数据集采用整个试次(0-2.5s)的数据。通过线性ICA算子确定产生信号的脑区。该算子包含对应200个皮层区域的权重向量,权重较高的区域对信号的贡献更大。在θ频段识别出了一个后部网络和一个背侧网络,分别主要覆盖枕叶/后顶叶皮层以及顶叶/后额叶皮层(图3a,b)。在α频段也识别出了空间分布类似的后部与背侧网络(图3c,d)。

图3.使用ICA分析HCP数据集中的小波数据识别出的网络。

在4名受试者的数据集中还发现了第五个前额θ波同步网络,但该网络仅在后期扫描中出现,前两次扫描中未检测到。本研究推测其与重复练习有关,故未进一步探讨该网络。网络可靠性评估采用4名受试者数据集。在控制其他变量的前提下,分别比较了各网络类型在扫描时段、任务或受试者间的相似性。例如,当比较跨时段相似性时,仅对比相同受试者同一任务生成的网络。数据按受试者-任务-时段划分后,可识别出63%的网络。

在比较过程中,采用余弦相似度计算相似性(范围-1至1)。在这种情况下,向量表示定义网络的ICA权重向量。分析显示,网络在任务(p<10-78)、扫描时段(p<10-21)和受试者(p<10-31)间均具有显著的可靠性(表1)。使用单侧t检验来验证平均余弦相似度是否显著大于零。

网络时序聚类与状态划分

通过k均值聚类将每个时间点按网络活动强度划分为四种状态。受试者在四种特征状态间转换:状态1-后部θ增强;状态2-后部α增强;状态3-背侧α增强;状态4-背侧θ增强(图4c)。

图4.对HCP数据集中独立成分的时间序列进行k均值聚类分析。

状态转换与认知表现

本研究考察了这些状态与HCP数据集中两项行为指标的关系:1)2-back任务的反应时(因准确率存在天花板效应:83%受试者的正确率>90%);2)三项独立认知测试的综合表现(一个测试认知灵活性的卡片分类任务,一个测试抑制控制的侧翼任务,以及一个加工速度测试)(图5a)。这三项任务反映了基本的执行功能,并且它们之间有很高的相关性,故通过主成分分析提取第一主成分(PC1)作为综合表现指标。

图5.HCP数据集中状态转换与认知表现之间的关系。

定义状态转换率为试次内各状态间的转换次数。研究发现,状态转换次数与反应时(p=0.0051)及PC1(p=0.0021)均呈现显著的二次关系(quadratic relationship),最佳转换次数为9次(图5b,c)。总的来说,本研究结果表明,认知表现与状态转换控制相关。

编码与维持状态的识别

使用4名受试者数据集将状态与vsWM的编码/维持过程相关联。不同于2-back任务,工作记忆网格和异形筛选任务的认知过程与试次事件锁时。更具体地说,刺激呈现期应为编码状态,延迟期应为维持状态。

研究结果显示,后部θ主导的状态1在编码期最活跃,背侧α主导的状态3在维持期最活跃(图6a)。为了验证这种状态转换的特异性,采用相同受试者的言语识别任务(判断是否出现字母Q)进行分析,该任务未显示状态1与3的系统性转换(图6b,c)。

图6.在4名受试者数据集中,工作记忆负荷与状态1、3持续时间的关系。

本研究进一步考察了状态1、3持续时间与记忆负荷之间的关系(图6d,e),发现在工作记忆网格任务中,刺激呈现期的状态1持续时间随负荷增加呈显著线性下降(βS.D.=-0.79,p<10-7);对于异形筛选任务,没有观察到这种现象(p=0.25)。在延迟期,本研究发现了一个显著的二次关系,在负荷为3时,状态3在两种任务的维持阶段最为活跃(工作记忆网格:p<10-11,异形筛选:p<10-6)。

后部θ的调控机制

工作记忆网格任务分析提示状态1可能参与vsWM的输入门控,但这一下降也可能源于刺激重复暴露而非内在调控。为了理清这一问题,本研究重新分析了含干扰项的第三组vsWM任务数据。在这个任务中,13名受试者需要记住依次呈现的四个条形刺激的旋转,或在干扰试次中,仅需记住第一次和第四次呈现的条形刺激的旋转(图7)。

图7.在干扰试次与非干扰试次中,状态1持续时间的比较。

若状态1受内部调控,即使刺激相同,干扰试次与非干扰试次在刺激呈现期间的状态持续时间也会存在差异。具体而言,本研究预期在干扰试次中,刺激2和3在状态1的持续时间会缩短。此外,根据WM-Grid分析,状态1的持续时间随认知负荷增加而递减(图6d)。因此,本研究预测,当认知负荷为2(而非4)时,刺激4在干扰试次中的状态1持续时间将长于非干扰试次。

为了验证这一点,本研究计算了在刺激2(1.5–2.0s)、3(2.5–3.0s)和4(3.5–4.0s)呈现期内状态1的持续时间,随后计算了每位受试者在两种条件下的差值(图7)。也就是说,若干扰与非干扰试次差值符合预期方向则记为正值,反之记为负值。由此获得13位受试者的三种刺激的总体趋势。单侧配对t检验显示,该差值显著大于零(p = 0.009)。

低频神经通路网络的计算模拟

MEG数据分析表明,大型振荡网络可形成功能性脑状态。然而,迄今仍缺乏这些状态如何影响神经活动的机制性解释。本研究假设,通过相位-振幅耦合,低频网络能调控高频脉冲信息的传输路径。为了验证该假设,本研究采用计算脑模型进行模拟。

除通过建模深化机制理解外,模拟还允许我们根据传递熵来量化信息流。传递熵具有可量化非线性信息流等优势,但需要大量连续数据,难以适应真实数据中的快速状态切换。此外,模拟数据不存在信噪比低的问题,但该问题在分析MEG高频脉冲时尤为突出。

该计算模型包含200个对应Schaefer图谱的皮层节点及两个基底节-丘脑节点(每半球一个,图8a)。节点连接性与节点间距均基于MICA-MICs MRI数据集中十名受试者的结构数据来定义。所有模拟首先在个体内运行,然后对十个受试者的结果进行平均。

图8.模型架构与网络生成。

每个节点含脉冲层和振荡层,层内节点通信取决于信号强度与节点间距。此外,通过相位-振幅耦合,振荡活动可调控脉冲活动。具体而言,脉冲活动在振荡波谷增强、波峰抑制。模拟评估了三个问题:1)实验数据识别区域能否产生同步化;2)同步化能否促进信息流;3)信息流是否依赖于同步频率。

使用丘脑输入生成网络

本研究假设丘脑协同输入可作为一种同步皮层节点的机制,因此特异性增强丘脑振荡活动强度(图8b),靶向后部(图3a)或背侧(图3d)区域,并使用锁相值计算皮层节点间的同步性。丘脑输入信号能选择性地增强背侧/后部网络同步性。平均而言,后部网络(63%)和背侧网络(62%)在接收丘脑输入时,网络内部的同步活动与网络外部的同步活动之间存在一定的差异。单侧t检验结果表明,两组差异均显著(后部p<10-5,背侧p<10-7)(图8c-d)。

同步化对信息流的影响

接下来,本研究评估了同步化如何调控脉冲层信息流,特别假设同步化会促进同步网络内节点的信息传递。因此,本研究将外部输入增加到网络内的脉冲单元,并使用传递熵量化至其他节点的信息流。所有模拟均在个体内执行,然后对所有受试者的结果进行平均。

本研究测试了四种条件:在背侧/后部同步状态下,分别刺激初级视觉皮层(V1)或顶内沟(IPS)。选择这些节点是因为它们分别参与了早期视觉处理和vsWM维持。所有条件的同步频率均设置为10Hz。研究结果发现,在后部同步时,V1至全脑的传递熵比背侧同步高201%(SD=80%),而背侧同步时IPS至全脑的传递熵比后部同步高207%(SD=28%)(图9a)(单侧配对t检验,后部p<10-4,背侧p<10-9)。

图9.使用传递熵计算模型中的信息传递。

此外,这种增强效应在同步网络内部最为显著(双侧配对t检验;后部网络vs其他脑区p<10-4,背侧网络vs其他脑区p<10-7)(图9b)。

频率对信息流的影响

在证实同步化促进信息流后,本研究进一步考察了频率的调控作用。实验数据显示,各区域同时存在θ与α频段的网络。因此,本研究再次测试了四种条件:后部θ(6Hz)/α(10Hz)同步下刺激V1,背侧θ/α同步下刺激IPS。后部同步频率不影响传递熵(双侧配对t检验,p=0.85),但背侧θ同步传递熵整体高于α同步(p<10-6)(图9c)。尽管背侧α同步时信息传递整体下降,但至额眼区和刺激半球后皮层的传递仍然增强(图9d)。计算各节点传递熵的差异,并使用错误发现率(FDR)进行校正。

结论

本研究发现,在视觉工作记忆(vsWM)任务中,大脑状态可通过α与θ频段的大规模同步网络来表征。这些状态间切换的最佳控制与认知表现相关(无论是在MEG扫描期间,还是在单独的认知测试中)。进一步研究表明,背侧α同步主导的状态可被定义为维持状态,而后部θ同步主导的状态则定义为编码状态,二者均受认知负荷调控。模拟实验证实了同步网络能够促进脑区间的信息传递,并根据频率与空间位置实现信息差异化传递。总体而言,本研究揭示了vsWM任务中灵活性/稳定性基础振荡状态的重要性,并且这些状态的控制与认知表现有关。基于计算模拟结果,本研究进一步证明了这些状态可通过空间位置与振荡频率来调控信息流。

参考文献:Ericson, J., Ruiz Ibáñez, N., Lundqvist, M. et al. Low frequency oscillations-neural correlates of stability and flexibility in cognition. Nat Commun 16, 5381 (2025). https://doi.org/10.1038/s41467-025-60821-2

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值