
小知识点学习
MQTXWD
小白一枚,请多多指教
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17.3.23 Resampling wheel 算法
近期再看CS373的课程(Robotic Car),当讲到粒子滤波器的时候,提到了一个resampling wheel的东西,当时不是很了解,这种方法是用来干嘛的。对于部分粒子滤波需要一些基于权重的粒子。为了能够完成这一工作,resample wheel方法被提出来了。这是一种从原来的粒子集中随机生成的新的粒子,粒子的权重决定了改粒子被选中的似然估计。 这是大体的算法思路。具体的算法实现如下:原创 2017-03-23 09:21:40 · 1131 阅读 · 0 评论 -
17.5.2 经典相关分析(Canonical Correlation Analysis, CCA)
由于近期看到了某些文章中用到CCA subspace的方法。所以索性好好了解一下CCA。在概率论中,相关系数的概念就是研究两个变量之间的线性相关情况。在此基础上,如果研究得失一个变量和多个随机变量之间的线性相关关系,所以提出了全相关系数(或者复相关系数)的概念。然后,在1936年又进一步做了推广,研究 多个随机变量和多个随机变量之间的线性相关关系,提出了经典相关分析的理论。 典型相关分析的实质就是原创 2017-05-02 13:35:03 · 1393 阅读 · 0 评论 -
17.5.8 韦伯局部描述符(Weber's Local Descriptor)
在大多的据不描述符中,Gabor小波和LBP是常见的两种。本文将主要介绍另外一种纹理的描述算子WLD(Weber’s Local Descriptor),主要由两部分组成:差励(differential excitation)和方向(orientation),这是一种简单高效的、鲁棒的纹理描述符。该方法发源于韦伯定理,他认为一个刺激的变化和原刺激本身的比值是一个固定的常数,当一个变化是比这种原始的刺原创 2017-05-08 09:53:12 · 4302 阅读 · 0 评论 -
17.5.8 生成模型(Generative model)和判别模型(Discriminative model)的区别
在有些文章里面常常会提到生成模型(Generative model)和判别模型(Discriminative model)。那么这两种模型到底有什么区别呢?举个简单的例子,对于下面的一组数据。 对于图中给定的四个位置的数据可以清楚的看出两者的概率存在一定的差异。对于上面的p(x,y)其实是求得对于一个新输入的x,计算分别属于四个位置的概率,运用这种想法的模型是生成模型。对于下面的p(x|y)其原创 2017-05-08 10:17:48 · 699 阅读 · 0 评论