DWR第一个示例

本文介绍如何使用DWR框架实现AJAX功能,并通过一个具体的示例演示了其核心功能,包括导入jar包、配置web.xml文件、编写Java类以及在JSP页面中的调用过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DWR是一种Ajax实现,他就是封装了Ajax基础代码的一个框架。

下面首先看一个DWR的小示例,看一下DWR的具体功能。

使用DWR框架第一步也是先导入相应的jar包。首先导入dwr.jar。然后导入他依赖的jar包,包括log4j.jar、common-logging.jar等

然后再web.xml中进行配置。

<servlet>
        <servlet-name>dwr_servlet</servlet-name>
        <servlet-class>org.directwebremoting.servlet.DwrServlet</servlet-class>
        <init-param>
            <param-name>debug</param-name>
            <param-value>true</param-value>
        </init-param>
    </servlet>
    <servlet-mapping>
        <servlet-name>dwr_servlet</servlet-name>
        <url-pattern>/dwr/*</url-pattern>
    </servlet-mapping>
然后再与web.xml的同级目录下新建dwr.xml并且添加以下内容

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC "-//GetAhead Limited//DTD Direct Web Remoting 3.0//EN" 
	"http://getahead.org/dwr/dwr30.dtd">
<dwr>
	<allow>
		<create javascript="service" creator="new">
			<param name="class" value="dwr.Service"/>
		</create>
	</allow>
</dwr>

关于该XML中的内容以及写法不进行详细解释,这里只是一个演示实例,进行一个简单的解释。

dwr标签是这个xml文件的顶级标签,相关的属性标签全都是这个标签的子标签。allow标签使DWR能够找到相应的java类。

在allow类中首先创建一个新的javascript,这个javascript的名字叫做service,create=“new”表示创建方式是new方式初始化,通过new初始化的类在param标签指定生成的类。然后在看相应的类,这个类在包dwr下,类名叫做Service。

package dwr;

public class Service {
	public String sayHello(String name){
		return "Hello "+name;
	}
}
在这个类中有个sayHello方法,这个方法返回一个字符串类型结果。

然后再看在JSP页面中如何调用,首先在JSP中有个按钮,当点击按钮后触发相应的javascript函数。

<body>
    <input type="button" value="DWR测试" onclick="firstDwr()"/>
  </body>
然后再看javascript代码:

	<script type="text/javascript" src="dwr/util.js"></script>
	<script type="text/javascript" src="dwr/engine.js"></script>
	<script type="text/javascript" src="dwr/interface/service.js"></script>
	<script type="text/javascript">
		function firstDwr(){
			service.sayHello("admin",callBackHello);
		}
		function callBackHello(data){
			alert(data);
		}
	</script>

注意在使用前必须导入util.js和engine.js,关于这两个js文件这里不做详细介绍。

然后将自己写的类映射成的javascript引入。这里的src的地址中"dwr/interface"是固定的,后面的service.js是你生成的javascript的名称,也就是在dwr.xml文件中使用create标签生成的名称。

这样一个简单的DWR应用程序搭建完成了。当点击JSP页面中的按钮时,会弹出一个对话框,对话框的内容是“Hello admin";


### 使用Transformer模型进行图像分类的方法 #### 方法概述 为了使Transformer能够应用于图像分类任务,一种有效的方式是将图像分割成固定大小的小块(patches),这些小块被线性映射为向量,并加上位置编码以保留空间信息[^2]。 #### 数据预处理 在准备输入数据的过程中,原始图片会被切分成多个不重叠的patch。假设一张尺寸为\(H \times W\)的RGB图像是要处理的对象,则可以按照设定好的宽度和高度参数来划分该图像。例如,对于分辨率为\(224\times 224\)像素的图像,如果选择每边切成16个部分的话,那么最终会得到\((224/16)^2=196\)个小方格作为单独的特征表示单元。之后,每一个这样的补丁都会通过一个简单的全连接层转换成为维度固定的嵌入向量。 ```python import torch from torchvision import transforms def preprocess_image(image_path, patch_size=16): transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), # 假设目标分辨率是224x224 transforms.ToTensor(), ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) patches = [] for i in range(tensor.shape[-2] // patch_size): # 高度方向上的循环 row_patches = [] for j in range(tensor.shape[-1] // patch_size): # 宽度方向上的循环 patch = tensor[:, :, i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size].flatten() row_patches.append(patch) patches.extend(row_patches) return torch.stack(patches) ``` #### 构建Transformer架构 构建Vision Transformer (ViT),通常包括以下几个组成部分: - **Patch Embedding Layer**: 将每个图像块转化为低维向量; - **Positional Encoding Layer**: 添加绝对或相对位置信息给上述获得的向量序列; - **Multiple Layers of Self-Attention and Feed Forward Networks**: 多层自注意机制与前馈神经网络交替堆叠而成的核心模块; 最后,在顶层附加一个全局平均池化层(Global Average Pooling)以及一个多类别Softmax回归器用于预测类标签。 ```python class VisionTransformer(nn.Module): def __init__(self, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0.): super().__init__() self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [drop_rate for _ in range(depth)] self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=dpr[i], ) for i in range(depth)]) self.norm = nn.LayerNorm(embed_dim) self.head = nn.Linear(embed_dim, num_classes) def forward(self, x): B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) x = self.patch_embed(x) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embed x = self.blocks(x) x = self.norm(x) return self.head(x[:, 0]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值