基于缎蓝园丁鸟算法优化卷积神经网络CNN的风电场发电功率预测

基于缎蓝园丁鸟算法优化卷积神经网络CNN的风电场发电功率预测

1.CNN原理

卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于图像和视频处理任务的神经网络模型[13]。 CNN 模型通常由多个卷积层、激活函数、池化层和全连接层组成,通过反向传播算法进行训练。在训练过程中,CNN 通过调整权重参数来最小化损失函数,以使模型能够更好地预测目标。CNN 模型的网络结构如图 1 所示。

在这里插入图片描述

图 1 CNN 模型的网络结构

卷积计算方法:
Y i = f ( X i ⊗ w i + b b ) (1) Y_i=f\left(\mathrm{X}_i \otimes w_i+b_b\right) \tag{1} Yi=f(Xiwi+bb)(1)

式中, ⊗ \otimes 为卷积操作; X i \mathrm{X}_i Xi 为卷积计算的序列; w i w_i wi 为卷积核的权重; b b b_b bb 表示偏移量; f ( ⋅ ) f(\cdot) f() 为激活函数。

2.风电功率预测

2.1 数据集

数据集为2019年风电功率数据,数据集如下:

时间测风塔10m风速(m/s)测风塔30m风速(m/s)测风塔50m风速(m/s)测风塔70m风速(m/s)轮毂高度风速(m/s)测风塔10m风向(°)测风塔30m风向(°)测风塔50m风向(°)测风塔70m风向(°)轮毂高度风向(°)温度(°)气压(hPa)湿度(%)实际发电功率(mw)
2019-01-01 00:00:000.223000.8180.818166.816177.3556.224210.836210.836-13.154898.7153.4970.979591

数据特征除时间意外,一共包含14维特征

我们利用Windowsize = 5天的数据预测下一天的数据, 于是5天的数据一共包含14*5=70维度,预测输出1维数据,即实际发电功率(mw)。实际应用中,Windowsize的大小可根据实际情况进行修改。

3.基于缎蓝园丁鸟算法优化的CNN

缎蓝园丁鸟算法原理请参考:https://blog.csdn.net/u011835903/article/details/107857884
由前文可知,CNN的参数设置具有满目性。本文利用缎蓝园丁鸟算法对CNN的参数(学习率,CNN神经元个数,正则化参数)进行优化。适应度函数设计为训练集的MAPE平均百分比误差:
f i t n e s s = a r g m i n ( M A P E p r i d e c t ) fitness = argmin(MAPE{pridect}) fitness=argmin(MAPEpridect)

适应度函数选取训练后的MAPE误差。MAPE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳学习率,CNN神经元个数,正则化参数。然后利用最佳学习率,CNN神经元个数,正则化参数训练后的网络对测试数据集进行测试。

4.实验结果

在这里插入图片描述

5.Matlab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值