基于热交换算法优化门控循环单元网络GRU的风电场发电功率预测
1.GRU原理
RNN适合分析处理时间序列数据,因为RNN在网络中引入了循环单元结构,并允许隐藏单元之间的内部连接,使探索非连续数据之间的时间关系成为可能。但RNN存在梯度消失的问题,导致随着时间间隔不断增大,RNN会丧失学习过去较久远信息的能力。
LSTM神经网络的提出解决了RNN梯度消失的问题,已被广泛应用于预测时间序列数据领域中,近年来根据不同的需求也演变出许多变体。GRU作为LSTM的一种变体,采用门控循环神经网络结构,相比LSTM训练参数较少,又同时保持了LSTM的预测效果。GRU内部单元与LSTM的内部单元很相似,不同之处为GRU将LSTM中的输入门和遗忘门合成一个单一的更新门。因此,GRU中只有两个门结构,分别为更新门和重置门。更新门用于控制前一时刻的状态信息保留到当前状态中的程度,更新门的值越大表示前一时刻的状态信息保留越多。重置门用于确定是否要结合当前状态与先前的信息,重置门的值越小说明忽略的信息越多。
如前所述,假设 x t \boldsymbol{x}_t xt为输入, h t \boldsymbol{h}_t ht为隐藏层的输出,GRU单元通过以下公式计算得到 h t \boldsymbol{h}_t ht:
z t = σ ( W ( z ) x t + U ( z ) h t − 1 ) r t = σ ( W ( r ) x t + U ( r ) h t − 1 ) h ~ t = tanh ( r t ∘ U h t − 1 + W x t ) h t = ( 1 − z t ) ∘ h ~ t + z t ∘ h t − 1 ) \begin{gathered} \boldsymbol{z}_t=\sigma\left(\boldsymbol{W}^{(z)}\boldsymbol{x}_t+\boldsymbol{U}^{(z)}\boldsymbol{h}_{t-1}\right)\\ \boldsymbol{r}_t=\sigma\left(\boldsymbol{W}^{(r)}\boldsymbol{x}_t+\boldsymbol{U}^{(r)}\boldsymbol{h}_{t-1}\right)\\ \tilde{\boldsymbol{h}}_t=\tanh\left(\boldsymbol{r}_t\circ\boldsymbol{U}\boldsymbol{h}_{t-1}+\boldsymbol{W}\boldsymbol{x}_t\right)\\ \left.\boldsymbol{h}_t=\left(\mathbf{1}-\boldsymbol{z}_t\right)\circ\tilde{\boldsymbol{h}}_t+\boldsymbol{z}_t\circ\boldsymbol{h}_{t-1}\right) \end{gathered} zt=σ(W(z)xt+U(z)ht−1)rt=σ(W(r)xt+U(r)ht−1)h~t=tanh(rt∘Uht−1+Wxt)ht=(1−zt)∘h~t+zt∘ht−1)
式中: z t \boldsymbol{z}_t zt和 r t \boldsymbol{r}_t rt分别为更新门和重置门; h ~ t \tilde{\boldsymbol{h}}_t h~t为输入 x t \boldsymbol{x}_t xt和上一隐藏层输出结果 h t − 1 \boldsymbol{h}_{t-1} ht−1的汇总; σ \sigma σ为Sigmoid函数; tanh \tanh tanh为双曲正切函数; U ( z ) , W ( z ) , U ( r ) , W ( r ) , U \boldsymbol{U}^{(z)},\boldsymbol{W}^{(z)},\boldsymbol{U}^{(r)},\boldsymbol{W}^{(r)},\boldsymbol{U} U(z),W(z),U(r),W(r),U, W \boldsymbol{W} W为训练参数矩阵; z t ⋅ h t − 1 \boldsymbol{z}_t\cdot\boldsymbol{h}_{t-1} zt⋅ht−1表示 z t \boldsymbol{z}_t zt和 h t − 1 \boldsymbol{h}_{t-1} ht−1的复合关系。
2.风电功率预测
2.1数据集
数据集为2019年风电功率数据,数据集如下:
时间 | 测风塔10m风速(m/s) | 测风塔30m风速(m/s) | 测风塔50m风速(m/s) | 测风塔70m风速(m/s) | 轮毂高度风速(m/s) | 测风塔10m风向(°) | 测风塔30m风向(°) | 测风塔50m风向(°) | 测风塔70m风向(°) | 轮毂高度风向(°) | 温度(°) | 气压(hPa) | 湿度(%) | 实际发电功率(mw) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019-01-0100:00:00 | 0.223 | 0 | 0 | 0.818 | 0.818 | 166.816 | 177.355 | 6.224 | 210.836 | 210.836 | -13.154 | 898.71 | 53.497 | 0.979591 |
数据特征除时间意外,一共包含14维特征
我们利用Windowsize=5天的数据预测下一天的数据,于是5天的数据一共包含14*5=70维度,预测输出1维数据,即实际发电功率(mw)。实际应用中,Windowsize的大小可根据实际情况进行修改。
3.基于热交换算法优化的GRU
热交换算法原理请参考:https://blog.csdn.net/u011835903/article/details/114221597
由前文可知,GRU的参数设置具有满目性。本文利用热交换算法对LSTM的参数(学习率,GRU神经元个数,正则化参数)进行优化。适应度函数设计为训练集的MAPE平均百分比误差:
f
i
t
n
e
s
s
=
a
r
g
m
i
n
(
M
A
P
E
p
r
i
d
e
c
t
)
fitness=argmin(MAPE{pridect})
fitness=argmin(MAPEpridect)
适应度函数选取训练后的MAPE误差。MAPE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳学习率,GRU神经元个数,正则化参数。然后利用最佳学习率,GRU神经元个数,正则化参数训练后的网络对测试数据集进行测试。