Ordinal Regression with Multiple Output CNN for Age Estimation

本文介绍了一种结合CNN和回归的深度学习网络,用于年龄预测。网络通过100个二分类子问题预测年龄,每个子问题对应1-100岁的一个区间。损失函数采用加权交叉熵,考虑了不同年龄类别的数据量。代码实现分别提供了Caffe和TensorFlow版本,训练结果达到平均年龄误差8岁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文献提出了结合CNN和回归进行年龄预测的端到端的深度学习网络,网络结构图如下,

这里写图片描述

输入为 60×60×3 的图像,网络的前三层为三个卷积层,前两个卷积层为convolution+relu+batchnorm+pooling,第三个卷积层为convolution+relu+batchnorm结构,卷积层之后是两个全连接层,第一个FC的输出通道为80,由于年龄预测为100个类别(1到100),因此第二个FC的输出通道为200,每两个输出作为一个二分类器.例如对于训练数据形式为 D=xi,ykiNi=1 , xi 为输入图像, yi 为对应的标签,对于第k个二值分类问题,训练数据为 D=xi,yki,wkiN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值