1.引入依赖
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.irt.rootcloud</groupId>
<artifactId>beam-spark</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>beam-spark</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<spark.version>1.6.2</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>0.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark</artifactId>
<version>0.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.10</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<createDependencyReducedPom>false</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>shaded</shadedClassifierName>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
2.编写workcount测试代码
import org.apache.beam.runners.spark.SparkRunner;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.runners.PipelineRunner;
import org.apache.beam.sdk.transforms.Aggregator;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import com.codahale.metrics.DerivativeGauge;
/**
* An example that counts words in Shakespeare and includes Beam best practices.
*
* <p>This class, {@link WordCount}, is the second in a series of four successively more detailed
* 'word count' examples. You may first want to take a look at {@link MinimalWordCount}.
* After you've looked at this example, then see the {@link DebuggingWordCount}
* pipeline, for introduction of additional concepts.
*
* <p>For a detailed walkthrough of this example, see
* <a href="http://beam.apache.org/use/walkthroughs/">
* http://beam.apache.org/use/walkthroughs/
* </a>
*
* <p>Basic concepts, also in the MinimalWordCount example:
* Reading text files; counting a PCollection; writing to text files
*
* <p>New Concepts:
* <pre>
* 1. Executing a Pipeline both locally and using the selected runner
* 2. Using ParDo with static DoFns defined out-of-line
* 3. Building a composite transform
* 4. Defining your own pipeline options
* </pre>
*
* <p>Concept #1: you can execute this pipeline either locally or using by selecting another runner.
* These are now command-line options and not hard-coded as they were in the MinimalWordCount
* example.
*
* <p>To change the runner, specify:
* <pre>{@code
* --runner=YOUR_SELECTED_RUNNER
* }
* </pre>
*
* <p>To execute this pipeline, specify a local output file (if using the
* {@code DirectRunner}) or output prefix on a supported distributed file system.
* <pre>{@code
* --output=[YOUR_LOCAL_FILE | YOUR_OUTPUT_PREFIX]
* }</pre>
*
* <p>The input file defaults to a public data set containing the text of of King Lear,
* by William Shakespeare. You can override it and choose your own input with {@code --inputFile}.
*/
public class WordCount {
/**
* Concept #2: You can make your pipeline assembly code less verbose by defining your DoFns
* statically out-of-line. This DoFn tokenizes lines of text into individual words; we pass it
* to a ParDo in the pipeline.
*/
static class ExtractWordsFn extends DoFn<String, String> {
private final Aggregator<Long, Long> emptyLines =
createAggregator("emptyLines", new Sum.SumLongFn());
@ProcessElement
public void processElement(ProcessContext c) {
if (c.element().trim().isEmpty()) {
emptyLines.addValue(1L);
}
// Split the line into words.
String[] words = c.element().split("[^a-zA-Z']+");
// Output each word encountered into the output PCollection.
for (String word : words) {
if (!word.isEmpty()) {
c.output(word);
}
}
}
}
/** A SimpleFunction that converts a Word and Count into a printable string. */
public static class FormatAsTextFn extends SimpleFunction<KV<String, Long>, String> {
@Override
public String apply(KV<String, Long> input) {
return input.getKey() + ": " + input.getValue();
}
}
/**
* A PTransform that converts a PCollection containing lines of text into a PCollection of
* formatted word counts.
*
* <p>Concept #3: This is a custom composite transform that bundles two transforms (ParDo and
* Count) as a reusable PTransform subclass. Using composite transforms allows for easy reuse,
* modular testing, and an improved monitoring experience.
*/
public static class CountWords extends PTransform<PCollection<String>,
PCollection<KV<String, Long>>> {
@Override
public PCollection<KV<String, Long>> expand(PCollection<String> lines) {
// Convert lines of text into individual words.
PCollection<String> words = lines.apply(
ParDo.of(new ExtractWordsFn()));
// Count the number of times each word occurs.
PCollection<KV<String, Long>> wordCounts =
words.apply(Count.<String>perElement());
return wordCounts;
}
}
/**
* Options supported by {@link WordCount}.
*
* <p>Concept #4: Defining your own configuration options. Here, you can add your own arguments
* to be processed by the command-line parser, and specify default values for them. You can then
* access the options values in your pipeline code.
*
* <p>Inherits standard configuration options.
*/
public interface WordCountOptions extends PipelineOptions {
/**
* By default, this example reads from a public dataset containing the text of
* King Lear. Set this option to choose a different input file or glob.
*/
@Description("Path of the file to read from")
@Default.String("D:\\dubbo.xsd")
String getInputFile();
void setInputFile(String value);
/**
* Set this required option to specify where to write the output.
*/
@Description("Path of the file to write to")
@Required
String getOutput();
void setOutput(String value);
}
public static void main(String[] args) {
args=new String[]{"--output=d:\\apache-beam-workdcount.txt","--runner=SparkRunner","--sparkMaster=local[4]"};
WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation()
.as(WordCountOptions.class);
Pipeline p = Pipeline.create(options);
// Concepts #2 and #3: Our pipeline applies the composite CountWords transform, and passes the
// static FormatAsTextFn() to the ParDo transform.
p.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));
p.run().waitUntilFinish();
}
}
3.注意
args=new String[]{"--output=d:\\apache-beam-workdcount.txt","--runner=SparkRunner","--sparkMaster=local[4]"};
上面这行代码只是在本地测试执行代码时方便,手动赋予参数,如果真的提交到spark集群上则不需要这样指定,既不需要次行代码。而是从spark提交任务中指定参数如:
spark-submit --class com.irt.rootcloud.beam.spark.WordCount --master spark://HOST:PORT target/beam-examples-1.0.0-shaded.jar --runner=SparkRunner