具身智能中的(VLA)算法与实践 第21讲:CogACT训练实践——分层VLA模型的深度训练策略与复杂代码实现

欢迎关注本专栏,一起探索新世界

大家好,我是ZhuChunSHU985院校硕士毕业,现担任算法研究员一职,热衷于深度学习算法研究与应用。曾获得阿里云天池比赛第三名,CCE比赛第五名,科大讯飞Q比赛第六名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

### 技术原理 VLA(Vision-Language-Action)大模型是一种整合视觉(Vision)、语言(Language)和动作(Action)的多模态模型。它通过将视觉感知、语言理解和动作执行结合在一起,实现复杂任务的端到端控制。这种模型通常需要大量的多模态数据进行训练,包括视觉输入、语言指令以及相应的动作输出。VLA模型的核心在于其能够将不同模态的信息进行融合,并生成相应的动作指令,从而实现从感知到行动的无缝衔接 [^1]。 然而,VLA模型存在数据采集难度大和长期规划状态跟踪能力欠缺等问题。为了解决这些问题,行业公司提出了双系统架构技术路径,将原本的长链条端到端模型VLA模型拆分为VLM(Vision-Language Model)和动作执行两个模型分层模型利用大语言模型的强大规划推理能力,构造出类似人类“快慢脑”的结构,其中快脑为系统1,专注于操作,负责实时执行和调整行动;慢脑为系统2,专注慢推理规划,负责制定战略 [^1]。 ### 应用场景 VLA模型的应用场景非常广泛,尤其是在需要多模态交互和复杂决策的领域。以下是一些具体的应用场景: 1. **机器人控制**:VLA模型在机器人领域有着广泛的应用,特别是在通用人形控制方面。例如,Helix 是一种用于通用人形控制的VLA模型,它通过一个统一的模型就能在各种任务中表现出色。这表明VLA模型在机器人控制中的潜力,尤其是在需要高度自主性和适应性的环境中 [^3]。 2. **自动驾驶**:小鹏在最近发布的G7已经明确表示采用VLA,尽管具体实现形式尚不清楚,但通过其发布的720亿(72B)云端算法架构图,可以看出这是一个云端VLA的架构。未来估计可以蒸馏成一个车端VLA模型放到车端芯片上,这表明VLA模型在自动驾驶领域的应用前景 [^4]。 3. **人机协作**:VLA模型正推动AI从"感知智能"向"行动智能"跃迁,其发展将重塑人机协作范式。通过VLA模型,机器可以更好地理解人类的意图,并执行相应的动作,从而实现更高效的人机协作 [^2]。 4. **虚拟助手**:VLA模型可以用于开发更智能的虚拟助手,这些助手不仅能够理解和生成语言,还能够通过视觉感知和动作执行来完成复杂的任务。例如,虚拟助手可以通过视觉识别用户的环境,并根据用户的指令执行相应的动作 [^1]。 5. **教育和娱乐**:VLA模型在教育和娱乐领域也有着广泛的应用。例如,通过VLA模型,虚拟角色可以更好地理解和响应用户的指令,提供更加沉浸式的体验。此外,VLA模型还可以用于开发智能玩具和教育工具,帮助儿童更好地学习和成长 。 ### 代码示例 以下是一个简单的VLA模型的伪代码示例,展示了如何将视觉、语言和动作模态进行融合: ```python class VLA_Model: def __init__(self): self.vision_model = VisionModel() self.language_model = LanguageModel() self.action_model = ActionModel() def forward(self, visual_input, language_input): vision_features = self.vision_model(visual_input) language_features = self.language_model(language_input) combined_features = torch.cat((vision_features, language_features), dim=1) action_output = self.action_model(combined_features) return action_output ``` 在这个示例中,`VLA_Model`类包含了三个子模型:`VisionModel`、`LanguageModel`和`ActionModel`。`VisionModel`负责处理视觉输入,`LanguageModel`负责处理语言输入,`ActionModel`负责生成动作输出。通过将视觉和语言特征进行拼接,并输入到`ActionModel`中,最终生成相应的动作输出。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值