1 引言
1.1 研究背景与意义
随着智慧城市建设的加速推进,城市物联网(IoT)设备数量激增,涵盖了环境监测、基础设施管理、公共安全等多个领域。然而,传统的地面IoT数据收集方式存在覆盖范围有限、部署成本高且在灾害应急场景下可靠性低的突出问题。无人机(UAV)凭借其高机动性、低部署成本和灵活的视距链路特性,成为城市IoT服务的理想补充载体4。通过搭载多种传感器,无人机能够实现对分散IoT设备的高效数据收集与服务覆盖优化,为城市提供实时、可靠的数据支持。
尽管无人机辅助IoT服务前景广阔,但其实际应用仍面临诸多挑战:首先,城市环境存在密集建筑和动态障碍物,对无人机的安全导航构成威胁;其次,IoT设备分布广泛且位置可能未知,要求无人机具备智能探索能力;再者,多无人机协同需要分布式决策机制以避免冲突并优化整体效率;最后,能耗约束与通信可靠性也是实际部署中必须考虑的关键因素411。
1.2 研究目标与内容
本研究旨在针对城市环境中无人机辅助IoT服务的优化问题,提出一套基于多智能体强化学习(MARL)的协同路径规划与数据收集框架