
人形机器人系统:理论与实战
文章平均质量分 92
《人形机器人系统:跨学科融合与创新实践》
本专栏深度解析人形机器人领域的核心理论与工程实践,涵盖仿生驱动、多模态感知、动态运动控制等前沿技术。通过经典算法剖析、最新科研成果解读及工业级项目案例,展现机械设计、人工智能与神经科学的深度融合。专栏特别设置开发手记板块,提供Gazebo/R
ZhuChunSHU
ZhuChunSHU。985院校硕士毕业,现担任算法研究员一职,热衷于深度学习算法研究与应用。曾获得阿里云天池比赛第三名,CCE比赛第五名,科大讯飞Q比赛第六名。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【具身智能】第十章 仿真到真实 (Sim-to-Real) 部署:跨越现实鸿沟
《跨越现实鸿沟:具身智能从仿真到实战的三重技术》摘要 本文深入探讨了具身智能面临的核心挑战——现实鸿沟,并提出三大关键技术解决方案。现实鸿沟表现为仿真环境与真实世界在视觉(纹理/光照/传感器噪声)和动力学(物理参数/执行器差异)两方面的差异。作者系统性地介绍了三种核心方法:域随机化通过创建多样化训练环境增强策略鲁棒性;域适应学习仿真与现实的映射关系;系统辨识精准识别真实物理参数。文章通过CartPole环境实验证明,经过域随机化训练的智能体在新环境中的平均奖励比固定环境训练的智能体高出40%。最后,详细解析原创 2025-08-09 14:53:17 · 33 阅读 · 0 评论 -
【具身智能】第九章 基准复现与创新:从模仿到超越的科研方法论 附完整源码
摘要:本文介绍了算法研究员ZhuChunSHU关于具身智能导航算法的系统研究,包括从原理到实践的完整流程。作者重点讲解了如何选择合适的前沿开源项目进行复现(如CLIP-Nav算法),通过消融实验分析各模块贡献,并提出创新性改进方案。文章还提供了完整的算法实现代码,包括占据栅格地图、A*路径规划、动态窗口方法等核心模块。通过SemExp架构案例,展示了从探索到目标导航的完整决策流程。该研究为算法复现与创新提供了方法论指导和实践参考。原创 2025-08-09 14:39:09 · 33 阅读 · 0 评论 -
【具身智能】第八章 基于LLM/VLM的导航方法 实战:前沿项目代码解析
本文分享了智能机器人系统的关键技术实现,包括提示工程、视觉语言模型处理和高效缓存机制。作者ZhuChunSHU(985硕士,算法研究员,曾获多项AI竞赛奖项)通过教学代码展示了如何:1)构建结构化提示激发LLM潜力;2)将VLM输出转化为结构化知识;3)设计基于上下文哈希的智能缓存。完整代码实现了"感知-思考-行动"闭环,包含LLM/VLM处理器、场景记忆模块和机器人控制器,演示了从寻找苹果到任务完成的完整流程。文章特别强调了提示工程如何为AI注入"灵魂",以及高效缓原创 2025-08-09 14:30:01 · 26 阅读 · 0 评论 -
【具身智能】第七章 基于LLM/VLM的导航方法
【摘要】本文介绍了大型语言模型(LLM)和视觉语言模型(VLM)在机器人导航中的创新应用。作者ZhuChunSHU(985硕士/算法研究员)通过三个核心范式展示技术原理:1)LLM作为认知规划器(SayCan框架),通过任务分解与可行性评估实现智能决策;2)VLM构建语义地图,为A*算法提供基于视觉的启发式函数;3)NavGPT框架结合场景记忆与多模态推理。文章包含完整代码实现,演示了如何将"感知-行动"循环升级为"感知-认知-行动"范式,并附有实际应用案例(如家庭服原创 2025-08-09 14:21:39 · 25 阅读 · 0 评论 -
【具身智能】第五章 基于世界模型的方法 (World Model-based) 完整代码在文章末尾
摘要:本文介绍了基于世界模型的强化学习方法(World Model-based),该方法通过构建环境模型在"梦境"中进行高效学习,显著提升样本效率。文章详细解析了DreamerV3和TWM(Transformer World Model)两种代表性算法,并提供了简化版实现代码。主要内容包括:1)世界模型三大核心组件(表征学习、动态预测、行为学习);2)在Pendulum和CartPole环境中的代码实现;3)与传统Model-Free方法的对比优势(样本效率高、泛化能力强、支持显式规划)原创 2025-08-09 13:47:07 · 26 阅读 · 0 评论 -
【具身智能】第四章 端到端导航与交互方法 含详细源码
摘要:本文介绍了端到端导航与交互方法在具身智能领域的应用,重点分析了模仿学习(IL)和强化学习(RL)两种核心算法。作者详细讲解了Dagger算法解决模仿学习中协变量偏移问题的原理,并提供了PPO算法的完整实现代码。通过两个典型案例(ZSON基于CLIP的零样本导航和PIRLNav结合模仿与强化学习的方法),展示了端到端模型在实际应用中的优势。文章包含大量可运行的Python代码示例,适合算法研究人员和AI开发者参考。原创 2025-08-09 13:29:58 · 22 阅读 · 0 评论 -
【具身智能】第三章 Habitat 3.0:从核心API到复杂任务的深度实践 完整代码在文章末尾
Habitat3.0深度实践指南:从API到复杂任务 本文深入探讨了Habitat3.0仿真平台的核心功能与应用。文章首先解析了环境配置、传感器系统(包括IMU和力传感器)以及动作空间设计等关键技术细节。通过一个完整的Python示例,展示了如何构建物理交互环境、配置多模态传感器,并实现物体操控和关节控制。 重点介绍了HAB基准测试的两个典型任务:"TidyaHouse"和"Prepare a Meal",分析了其面临的语义理解、任务规划和约束满足等挑战。文章提供了标原创 2025-08-09 13:11:45 · 47 阅读 · 0 评论 -
【具身智能】第二章 Habitat 3.0 仿真平台详解:从像素到物理,开启交互新纪元
《Habitat3.0:具身智能的物理交互新纪元》 本文深入解析Meta最新发布的Habitat3.0仿真平台,揭示其如何突破传统"观察世界"的局限,实现"改变世界"的范式革命。作为具身智能研究的重要工具,Habitat3.0通过四大创新特性构建物理交互桥梁:1)基于约束求解器的稳定物理引擎;2)支持冰箱/抽屉等关节式物体的运动学链交互;3)通过动态约束生成实现的抓取物理模拟;4)引入可交互仿真人推动人机协作研究。文章详细剖析技术原理,提供可运行的关节物体交互代码示例原创 2025-08-09 12:58:01 · 33 阅读 · 0 评论 -
具身智能:目标驱动导航的前沿理论与实战
【摘要】本专栏由985硕士、算法研究员ZhuChunSHU主持,他专注深度学习研究,曾获阿里云天池等多项算法竞赛奖项,持有发明专利,并成功辅导非科班学生转行算法领域。专栏将分享机器学习与深度学习的专业见解,助力读者成长进步。欢迎关注共同探索前沿技术世界。原创 2025-08-08 13:18:09 · 200 阅读 · 0 评论 -
【人工智能论文未发表 含源码】基于具身感知的动态人体三维重建
《基于具身感知的动态人体三维重建方法研究》 本文提出了一种针对具身感知场景的动态人体三维重建方法,解决了移动相机视角下的人体重建难题。该方法通过联合优化相机运动与人体姿态,实现了未知相机运动下的高精度三维人体重建。 研究团队设计了一个基于最大后验概率估计的时序优化框架,主要创新点包括: 统一能量函数:整合2D投影误差、人体运动平滑约束和相机运动平滑约束 物理约束机制:引入基于接触检测的地面约束 IMU数据融合:利用惯性测量单元提升轨迹估计稳定性 实验验证表明,该方法在EgoBody和RICH数据集上显著优于原创 2025-08-08 12:10:15 · 22 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第18讲:LCB算法详解:潜在代码桥接高层语义与低层细节的艺术
本文介绍了LCB(潜在代码桥梁)算法,这是一种通过中间潜在代码连接高层语义和低层细节的深度学习方法。文章详细阐述了LCB的设计思想、架构原理,并提供了完整的PyTorch实现代码,包括编码器、解码器的构建和训练过程。实验以MNIST数据集为例,展示了潜在空间的插值操作,验证了模型在图像重建和潜在空间操控方面的有效性。此外,文章还讨论了扩展优化方向,如正则化方法、架构调整和应用领域扩展。LCB算法通过构建这种"理解"与"表达"的桥梁,显著提升了深度学习模型的可解释性和可原创 2025-07-25 13:34:56 · 27 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第19讲:RoboDual算法详解:协同双系统,融合通用与专家策略
本文介绍了RoboDual算法框架,这是一种融合通用策略(VLM生成)与专家策略(特定任务优化)的机器人控制方法。通用策略负责高层语义理解和任务分解,专家策略实现精确底层控制,通过智能协调器实现动态调度。文章详细阐述了算法设计理念、模块化架构,并提供了基于PyTorch的概念实现代码,展示任务分解、专家选择和重试机制。该框架兼具泛化能力和执行精度,为复杂机器人操作提供了新思路,未来可通过学习型协调器、持续学习等方法进一步优化。原创 2025-07-25 13:39:04 · 24 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第20讲:Pi0-CogACT算法详解——高保真动作生成与动作块(Action Chunks)的深度解析
本文深入解析Pi0-CogACT算法,重点介绍其核心技术FlowMatching实现高保真动作生成的方法,以及动作块(ActionChunks)在复杂连续控制中的应用。文章包含详细的数学原理说明和PyTorch实现代码,展示如何通过FlowMatching学习从噪声分布到目标动作的确定性映射,并利用动作块抽象实现高效规划和平滑执行。作者ZhuChunSHU(985硕士,算法研究员,曾获多项AI竞赛奖项)通过代码示例和理论分析,帮助读者理解该算法在机器人控制和决策中的优势,包括维度降低、平滑性保证和层次化控制原创 2025-07-25 13:46:21 · 163 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第21讲:CogACT训练实践——分层VLA模型的深度训练策略与复杂代码实现
本文深入探讨了CogACT框架下分层视觉-语言-动作(VLA)模型的训练策略。作者从模型结构、训练方法到代码实现进行了全面分析,重点比较了分阶段训练和联合训练两种策略。分阶段训练通过逐步构建能力的模块化方法降低了复杂性,而联合训练则采用端到端优化实现全局对齐。文章详细介绍了模型架构设计、数据流处理、损失函数构建等关键技术,并提供了完善的代码实现,包括使用Gumbel-Softmax解决梯度穿透性问题。最后总结了训练对齐的关键技巧和注意事项,为机器人学习和具身智能领域的模型训练提供了实用指导。原创 2025-07-25 13:54:15 · 41 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第22讲:VLA模型泛化性、数据效率、虚实迁移、安全伦理与其他前沿技术(深度扩展)
《视觉-语言-动作模型的强化学习微调实践》 本文深入探讨了视觉-语言-动作(VLA)模型的核心挑战与解决方案。文章首先剖析了VLA模型面临的四大挑战:泛化性(处理新任务和环境的能力)、数据效率(降低训练数据需求)、虚实迁移(模拟到现实的转换)以及安全伦理问题。针对这些挑战,作者重点介绍了通过强化学习(RL)微调VLA模型的方法,详细阐述了行为克隆与RL算法(如PPO、SAC)的结合策略。 文章提供了完整的Python实现代码,包括自定义的Gymnasium环境模拟VLA输入、特征提取器设计以及PPO与行为克原创 2025-07-25 13:59:05 · 50 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第23讲:3D感知与VLA:深度融合的3D数据处理与架构实现——实现更精准
本文探讨了3D感知在视觉-语言-动作(VLA)模型中的精准应用,重点介绍了实现高精度空间理解的技术方案。作者首先阐述了3D信息在VLA模型中的核心价值,包括高精度几何重建、3D物体级理解和多模态特征融合等关键策略。随后详细解析了3D目标检测和6D位姿估计的实现方法,并提供了PointNet++的简化代码实现及其在VLA模型中的集成方案。文章还提出了进一步优化方向,包括多传感器融合、模型预测控制等,为提升VLA模型的精准操作能力提供了技术路线。作者作为算法研究员,分享了专业见解和实践经验。原创 2025-07-25 14:05:44 · 26 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第24讲:Octo算法详解:大规模通用机器人模型的构建与多任务学习(深度代码解析与精准性提升)
【摘要】本文深入探讨了Octo通用机器人算法的精准性提升技术。作者ZhuChunSHU(985院校硕士、算法研究员)分享了基于Transformer架构的改进方案,重点包括:1)采用VisionTransformer和大型语言模型实现细粒度多模态特征提取;2)设计深度融合Transformer架构,整合多视角视觉、语言指令、机器人状态等多维信息;3)引入高斯混合模型(GMM)进行6D姿态动作预测,提升控制精度。文章详细解析了代码实现关键点,包括多模态编码器构建、注意力机制优化和GMM损失计算,为解决机器人操原创 2025-07-25 14:10:40 · 34 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第25讲:ATM与高效动作Tokenization (如FAST):精准控制与推理加速的实现(代码优先深度解析)
摘要:本文探讨了机器人学习中的高效动作Tokenization方法,包括均匀量化、VQ-VAE和FAST算法。这些方法通过将连续动作离散化为Token,显著减少动作序列长度,提升模型推理速度。文章详细解析了各种策略的代码实现和数学原理,重点介绍了如何将VQ-VAE集成到VLA模型中实现动作预测。实验表明,这些方法在保证控制精度的同时,有效提升了训练效率,为构建高性能通用机器人模型提供了关键技术路径。原创 2025-07-25 14:19:59 · 38 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第17讲 分层端到端VLA,实现高层智能与低层控制的完美结合
摘要:本文由985院校硕士、算法研究员ZhuChunSHU分享分层端到端视觉-语言-动作(VLA)模型在机器人操作中的应用。文章探讨了如何结合高层语义理解(通过VLM实现)与低层精确控制,解决长序列复杂任务的挑战,包括任务分解、泛化能力和鲁棒性提升。详细介绍了分层VLA的架构设计、接口实现(附Python示例代码),以及低层策略的模仿学习/强化学习方法。同时分析了当前技术面临的语义鸿沟、实时性等挑战,并展望了多模态感知、自主学习等未来发展方向。本文为构建智能机器人系统提供了理论框架和实践指导。原创 2025-07-25 13:31:41 · 46 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第16讲:GR-1模型推理与部署实践
这篇教程详细介绍了将VLA模型部署到机器人(如GR-1)上的实践方法。主要内容包括: 部署挑战:分析了机器人部署面临的低延迟、计算效率、模型大小和能耗等关键问题。 技术方案: 使用ONNXRuntime和TensorRT等推理引擎优化性能 介绍量化(FP16/INT8)、剪枝等模型优化技术 演示PyTorch模型到ONNX的转换流程 实践代码: 提供了完整的PyTorch模型定义 ONNX导出和推理示例 TensorRT引擎构建和推理实现 量化工具的实际应用 高级优化: 深入讲解静态/动态量化原理 展示Te原创 2025-07-21 17:30:09 · 40 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第15讲:大规模VLA模型训练实践:深度剖析与高级优化
【摘要】本文介绍了大规模VLA模型训练的核心挑战与解决方案。针对显存爆炸、计算瓶颈和通信开销等问题,详细讲解了PyTorch的DistributedDataParallel(DDP)和HuggingFace Accelerate两种分布式训练方法。文章提供了可复用的代码模板,涵盖DDP内部机制、性能优化策略,以及Accelerate的高级功能如混合精度训练和DeepSpeed集成。通过显存分析、梯度同步原理和实际代码示例,帮助读者快速搭建分布式训练环境,适用于从基础到超大规模模型的训练需求。原创 2025-07-21 17:22:13 · 30 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第13讲:具身智能中的CoT与分层VLA方法:代码实践与Prompt工程
本文介绍了如何通过具身思维链(CoT)和分层VLA架构实现具身智能体执行复杂任务。主要内容包括:1)使用LLM/VLM作为高层规划器生成任务分解步骤;2)设计机器人模拟API和指令解析器;3)实现LLM Prompt工程和重规划机制;4)探讨真实部署中的挑战与应对策略。通过代码示例展示了从任务分解到执行的完整流程,同时讨论了VLA-OS作为机器人智能操作系统的愿景,强调其在任务协调、状态维护和错误恢复中的核心作用。原创 2025-07-21 17:15:02 · 43 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第12讲:RoboDreamer算法详解:基于世界模型的具身智能与语言控制
《RoboDreamer:融合世界模型与语言控制的具身智能算法》 本文介绍了RoboDreamer算法,该算法将世界模型与语言控制相结合,为具身智能系统提供了一种高效的学习和规划框架。文章重点阐述了以下核心内容: 世界模型的创新应用 采用DreamerV3架构构建潜在空间表示 实现高效"想象"和规划能力 通过内部模拟减少真实环境交互需求 语言控制的关键整合 自然语言指令作为高级目标输入 语言嵌入影响世界模型的想象过程 实现语义驱动的行为规划 技术实现要点 递归状态空间模型(RSSM)的核原创 2025-07-21 17:07:09 · 82 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第11讲:UniPi: 基于视频生成的具身规划——深度拓展与细节实现
【摘要】本文详细介绍了基于视频生成模型的具身规划方法UniPi,它通过预测未来视觉状态为机器人提供规划中间表示。文章从理论概念到PyTorch实现,深入解析了视觉前向模型架构,包含基于ResNet的编码器、Transformer时序建模和反卷积解码器。重点阐述了如何将生成的视频帧作为具象化规划依据,并通过交叉熵方法(CEM)进行优化。代码实现展示了从数据模拟、模型训练到规划应用的完整流程,包括位置编码、损失计算和可视化功能。该方法突破传统规划对精确环境模型的依赖,使机器人能在像素空间直接"观察&q原创 2025-07-21 17:01:13 · 21 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第10讲:显式端到端VLA定义与对比——深度解析与代码实现
本文介绍了显式端到端VLA(Vision-Language-Action)模型在机器人学习领域的应用,重点探讨了其与隐式VLA的区别及实现方法。文章通过代码示例展示了如何构建显式VLA接口,包括模拟VLM生成文本子目标、规划器解析子目标为机器人基元动作的过程。显式VLA通过明确定义的中间表示(如文本子目标)实现高可解释性和模块化,便于调试和系统维护。虽然可能牺牲部分端到端优化性能,但其可控性和可理解性在工程实践中更具价值。文章还提供了完整的代码框架和运行指南,为读者进一步探索VLA技术提供了实践基础。原创 2025-07-21 15:58:28 · 28 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第9讲:MDT实践:模型训练与代码实现
本文介绍了VLA(Vision-Language-Action)模型的完整PyTorch训练框架,包含数据加载、模型定义、训练循环和评估功能。重点讲解了简化版VLA模型的核心组件实现,包括视觉编码器、语言编码器、特征融合和序列处理。提供了完整的训练脚本,涵盖命令行参数配置、设备设置、数据准备、损失计算、优化器配置等关键环节。文章还分享了训练中的常见问题解决方法,如梯度爆炸/消失、过拟合/欠拟合等,并给出实用的调试技巧。该框架可作为开发MDT/RDT等更复杂VLA模型的基础,后续可扩展为包含更先进视觉模型、T原创 2025-07-21 15:04:28 · 38 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第8讲:MDT实践:数据集构建与处理——从示教到模型可用
本文介绍了机器人模仿学习中高质量示教数据的构建与处理方法,包括数据收集、标注、清洗和预处理全流程。重点讲解了如何利用Python工具处理多模态机器人数据,并详细实现了一个支持BridgeData格式的PyTorch数据加载管道。文章提供了完整的代码示例,涵盖动作归一化处理、图像序列加载、文本指令处理等关键环节,并演示了如何通过DataLoader实现高效批处理。该框架为机器人模仿学习模型训练提供了标准化的数据准备方案,适用于不同传感器配置和机器人平台。原创 2025-07-21 14:59:54 · 49 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第7讲:RDT算法详解:扩散模型在动作生成中的应用与PyTorch实现
【摘要】本文介绍了基于RDT(Robotics Diffusion Transformer)算法的机器人动作生成方法,重点探讨了扩散模型在动作序列生成中的应用。传统方法难以捕捉动作多样性,而扩散模型通过逐步去噪的方式,能从随机噪声中恢复真实动作数据分布,生成高质量且多样化的动作序列。文章详细解析了扩散模型的核心思想、PyTorch实现框架(包括噪声调度器和去噪网络),以及RDT模型架构(结合视觉-语言模型和扩散Transformer)。通过代码示例展示了扩散模型在机器人领域的应用,并与传统方法(如MDT)进原创 2025-07-21 14:52:49 · 46 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第5讲:RT-2 & OpenVLA算法详解
本文探讨了大型语言模型(LLM)和视觉语言模型(VLM)在机器人控制领域的革命性应用。重点分析了Google提出的RT-2模型及其"VLM-as-a-Policy"范式,以及OpenVLA项目如何通过统一接口处理不同任务。文章指出,强化学习微调(RL fine-tuning)和人类反馈强化学习(RLHF)可以显著提升模型性能和泛化能力。同时介绍了利用OpenX-Embodiment数据集进行训练评估的方法,以及PyTorch-Lightning等工具在大规模模型训练中的作用。最后讨论了该原创 2025-07-21 14:35:55 · 34 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第6讲:MDT算法详解:多机器人/多任务VLA模型与代码实现
本文介绍了MDT(Multi-robot Diffusion Transformer)算法,这是一种支持多机器人观测和动作空间的视觉语言动作(VLA)模型。作者ZhuChunSHU(985院校硕士,算法研究员)详细讲解了MDT如何通过统一输入表示、标准化动作空间和共享预测器来实现跨机器人形态的泛化能力。文章包含三个核心代码模块:动作空间标准化(action_utils.py)、多机器人数据加载(data_loader.py)和MDT模型实现(mdt_vla_model.py),重点展示了如何将不同机器人平台原创 2025-07-21 14:43:40 · 44 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第4讲:RoboFlamingo算法详解
摘要: 本文深入探讨了RoboFlamingo,一种基于大规模视觉语言模型(VLMs)的机器人学习方法。通过利用预训练的Flamingo架构,RoboFlamingo能够高效地将多模态感知能力迁移到机器人任务中,显著提升泛化能力和数据效率。文章详细分析了VLM在机器人领域的优势,包括零样本感知、语义理解和开放世界操作能力,并提供了代码实现示例,展示如何加载和微调预训练VLM以适应机器人任务。关键改进包括时间序列处理、门控交叉注意力机制和优化训练流程,为构建高性能机器人系统提供了实践指导。原创 2025-07-21 14:24:58 · 32 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第3讲:RT-1算法详解
本文详细解析了RT-1(Robotics Transformer 1)算法,这是一个基于Transformer架构的端到端视觉语言动作(VLA)模型。RT-1通过将机器人控制任务转化为序列生成问题,利用Transformer强大的序列建模能力,直接从多模态输入生成机器人动作指令。文章重点分析了RT-1的核心创新点:动作令牌化将连续动作离散化为256个桶,以及并行解码策略实现高效推理。通过代码示例展示了如何基于HuggingFace Transformers构建类似模型,包括视觉语言编码、特征融合和并行动作解原创 2025-07-21 14:19:13 · 26 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 隐式端到端VLA:第二讲 基于行为克隆的方法
摘要: 本文深度解析了隐式端到端视觉-语言-动作(VLA)模型的核心架构与实现方法。重点探讨了基于行为克隆的VLA模型设计,涵盖视觉编码器(CNN/ViT)、语言编码器(Transformer)、多模态融合模块(交叉注意力)和动作解码器的技术细节。文章对比了离散动作令牌、连续动作及混合动作块三种表示方式的优劣,并通过PyTorch代码示例演示了多模态数据预处理、动作离散化映射及动作解码器的实现。该框架通过统一神经网络直接映射感知输入到机器人动作输出,为具身智能提供高效解决方案,兼具算法理论分析与工程实践指导原创 2025-07-21 14:12:36 · 35 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践——第一讲 基础与概览
本文介绍了视觉-语言-动作(VLA)模型的基础概念及其在AI领域的重要性。VLA模型通过融合多模态数据实现具身智能,使AI系统能感知环境并执行物理动作。文章探讨了大型语言模型(LLMs)和视觉语言模型(VLMs)如何赋能具身智能,包括指令解析、场景理解和动作规划。同时提供了Python、PyTorch/TensorFlow开发环境的详细搭建指南,包含GPU配置建议和测试代码。VLA模型在机器人操作、导航、人机协作等领域具有广泛应用前景,是实现通用人工智能的关键技术。原创 2025-07-21 14:06:55 · 1026 阅读 · 0 评论 -
第 4.3 节: 基于视觉和运动模型的足球跟踪
《基于YOLO与卡尔曼滤波的足球机器人视觉跟踪系统》摘要: 本文介绍了如何利用YOLO目标检测与卡尔曼滤波技术实现足球机器人的视觉跟踪系统。作者首先阐述了多目标跟踪(MOT)技术在机器人足球比赛中的必要性,包括解决遮挡、检测抖动、预测未来位置等问题。随后详细讲解了卡尔曼滤波器的原理及其在足球跟踪中的应用,并创新性地提出将机器人自身运动信息融入跟踪过程。文章提供了完整的Python实现代码,包含滤波器初始化、机器人运动补偿模拟和主跟踪程序三大部分。通过实际演示视频可以看到,系统能稳定跟踪足球位置(蓝色实心圆)原创 2025-06-30 19:07:38 · 81 阅读 · 0 评论 -
第 4.2 节: 基于视觉的足球与球门检测:YOLO 系列的实际应用
《YOLO算法在机器人足球目标检测中的应用》 本文介绍了YOLO目标检测算法在机器人足球领域的应用。文章首先对比了两阶段检测器和单阶段检测器的特点,指出YOLO系列算法因其速度快、准确性高而成为机器人视觉的理想选择。随后详细解析了YOLO的核心原理,包括网格划分、边界框预测等技术要点。 实践部分提供了完整的代码示例,涵盖虚拟数据集构建、预训练模型使用和自定义训练流程。特别展示了如何创建符合YOLO格式的数据集,并利用YOLOv8进行实时足球和球门检测。文章还指导读者如何训练专属模型,包括数据准备、模型选择和原创 2025-06-30 19:00:12 · 145 阅读 · 0 评论 -
第 4 章: 基于视觉和激光雷达的感知与定位 4.1 节: 机器人感知传感器数据处理 (Python)
本文介绍了基于视觉和激光雷达的机器人感知与定位技术。文章首先概述了相机图像处理的基础方法,包括畸变校正、颜色空间转换和滤波处理(高斯、中值、双边滤波)。接着详细讲解了激光雷达点云数据的处理技术,包括点云滤波(统计离群点移除、半径滤波、直通滤波)、下采样和特征提取(法线估计)。文中还强调了多传感器数据同步的重要性,介绍了硬件同步和软件同步方法。最后提供了两个Python实践示例:1)使用OpenCV进行图像高级滤波和边缘检测;2)使用Open3D进行点云直通滤波和RANSAC平面分割。这些技术为机器人的环境感原创 2025-06-30 18:47:52 · 56 阅读 · 0 评论 -
双足机器人行走:一个人形机器人控制系统解析
本文详细解析了一个基于模型的双足人形机器人控制系统,采用多层架构实现稳定行走。系统包含全身控制(WBC)、模型预测控制(MPC)、步态规划、摆动腿轨迹生成和PVT关节控制器等核心模块。通过MuJoCo仿真平台,系统从初始站立姿态过渡到动态行走,各模块协同工作:MPC规划足部轨迹和重心运动,WBC协调关节动作完成多任务优化,底层PVT控制器实现精确力矩输出。代码分析展示了运动学逆解、状态估计、控制频率管理等关键技术实现。该系统展现了分层控制在复杂机器人任务中的有效性,为进一步扩展感知、自适应控制和智能决策等功原创 2025-06-12 09:55:56 · 290 阅读 · 0 评论 -
探索机械臂的“智慧之舞”:姿态、运动与轨迹规划的奥秘
本文探讨了机器人运动控制中的三个核心概念:姿态规划、运动规划和轨迹规划,并通过三个Mujoco仿真示例展示了其实际应用。姿态规划控制末端执行器的方向(如夹持器的角度),运动规划确定路径,轨迹规划则加入时间维度控制运动速度。代码演示了三种场景:直线单姿态插值、直线双姿态控制和圆弧三姿态控制,分别使用不同的参数类实现位置、姿态和速度的精确规划。这些技术协同工作,使机械臂能够以指定姿态平稳地完成直线和圆弧运动,为复杂任务如弧焊或精确抓取奠定了基础。原创 2025-06-12 09:49:28 · 256 阅读 · 0 评论 -
【具身智能】统一人形机器人遥操作前沿:代码实现框架
otv_core。原创 2025-06-07 10:57:53 · 72 阅读 · 0 评论