ZhuChunSHU
ZhuChunSHU。985院校硕士毕业,现担任算法研究员一职,热衷于深度学习算法研究与应用。曾获得阿里云天池比赛第三名,CCE比赛第五名,科大讯飞Q比赛第六名。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【3DGS权威指南】第六章:自动驾驶与未来展望 (研究者级深度技术报告)
《自动驾驶技术深度解析》专栏分享第六章内容,聚焦自动驾驶场景表征与算法研究。985硕士、算法研究员ZhuChunSHU从理论层面剖析三大表征困境:时空维度诅咒、运动场信息论悖论及重建仿真二元对立。通过解构StreetGaussians和DrivingGaussian算法核心,提供基于StreetGaussian的高精度城市街区重建实战指南,包含数据处理、配置文件解析等关键步骤。面向资深研究者,结合伪代码与数学公式,探讨高斯溅射范式在自动驾驶领域的深度应用,旨在建立可复现的实验基准。原创 2025-08-04 14:18:19 · 3 阅读 · 0 评论 -
【3DGS权威指南】第五章:从“云”到“面”
《3D高斯泼溅到网格转换:SuGaR方法实战解析》摘要 本文深入探讨了将3D高斯泼溅(3DGS)这种概率性体积表示转换为可编辑网格的关键技术与实践方法。核心挑战在于如何从非结构化的高斯云中重建出具有良好拓扑结构的二维流形表面。文章重点解析了SuGaR方法,该方法通过引入正则化损失项(包括Mimic Loss和Alignment Loss)促使高斯基元向潜在表面对齐。并提供了专家级实践教程,详细指导从环境配置、模型微调到网格提取的全流程操作,特别强调了泊松深度、不透明度阈值等关键参数对最终网格质量的影响。通过原创 2025-08-04 14:03:00 · 8 阅读 · 0 评论 -
【3DGS权威指南】第四章:动态场景重建 (开发者大师级手册)
摘要: 本文由ZhuChunSHU(985硕士、算法研究员,曾获阿里云天池等比赛奖项)分享4D高斯泼溅(4DGS)技术的进阶开发指南。内容涵盖三部分:1)基准架构回顾与分阶段解耦训练策略,解决标准空间模糊问题;2)架构演进方案,包括物-中心化组合模型(支持多物体独立运动)、物理先验引入(通过加速度正则化提升运动真实性)及生成式运动模型(通过潜在空间编码实现动作编辑);3)提供具体代码修改示例(如HexPlane扩展、损失函数增强等),并强调分阶段训练(静态模型→形变场→联合微调)的重要性。全文目标是从复现走原创 2025-08-04 12:59:46 · 186 阅读 · 0 评论 -
【3DGS权威指南】第三章:玩转高质量静态场景 (代码增强版
摘要:本文介绍了3D高斯泼溅(3DGS)技术在静态场景重建中的实践应用。作者从数据采集、项目创建到模型训练,详细讲解了标准3DGS重建流程,并提供了自动化脚本代码。针对3DGS在多尺度渲染中的"爆米花"伪影问题,文章深入分析了Mip-Splatting抗锯齿技术原理,并通过实验对比展示了其效果。对于无纹理区域重建难题,文章探讨了Scaffold-GS技术的几何先验引导方法。最后,补充介绍了稀疏视角重建的前沿技术,包括PixelSplat等基于深度学习先验的方法。本文为读者提供了从理论到实原创 2025-08-04 08:28:31 · 140 阅读 · 0 评论 -
【3DGS权威指南】第二章:深入3DGS的“心脏”:第一性原理、设计哲学与底层实现
摘要:本文深入解析3D高斯泼溅(3DGS)技术,从计算机图形学基础理论到工程实现细节。作为全光函数的离散近似,3DGS采用显式高斯基函数实现高效渲染。文章重点探讨了参数优化设计、可微分光栅化器实现等核心技术,分析其在GPU硬件上的并行优化策略,并详细解读Nerfstudio代码实现中的内存管理、损失函数设计和优化器配置等关键环节。通过系统性的技术剖析,揭示了3DGS在实时渲染场景中的独特优势和创新设计思想,为读者提供从理论到实践的全方位技术洞见。(149字)原创 2025-08-04 08:14:08 · 7 阅读 · 0 评论 -
【3DGS权威指南】第一章:从图像到三维:视觉重建的基石
它会从一个已知的相机位姿出发,沿着相机发出的无数条光线进行采样,询问光线上每个点的颜色和密度,然后通过一种称为**体积渲染(Volume Rendering)**的数学积分方法,计算出这条光线最终呈现的像素颜色。接着,将这个计算出的颜色与真实照片上对应像素的颜色进行比较,若有差异,就通过反向传播算法微调神经网络的权重,让下次的回答更精准。我们将深入代码,但更会剖析代码背后的思想。每只眼睛从略微不同的角度观察同一个物体,大脑通过融合这两个二维的图像,便能“计算”出物体的远近、深浅,从而构建出三维的感知。原创 2025-08-04 00:42:32 · 133 阅读 · 0 评论 -
【3DGS权威指南】开篇:3D世界的全新构建方式 (Introduction)
【3D高斯点云建模实战指南】本文系统介绍了3D Gaussian Splatting(3DGS)技术原理与应用实践。作为新一代三维重建技术,3DGS通过数百万个可调参数的高斯椭球来构建逼真场景,相比传统三角网格具有渲染速度快、细节丰富等优势。教程包含云端实践和本地环境搭建两大部分:1)在Google Colab中完成从数据采集到模型训练的全流程,重点解析了视频拍摄规范、SfM预处理和训练参数优化;2)详细指导本地环境配置,特别针对RTX3060等中端显卡提供了显存优化方案。文章强调3DGS技术的易用性和实用原创 2025-08-03 22:17:03 · 9 阅读 · 0 评论 -
3DGS权威指南:从核心理论到前沿应用的全方位实战
本专栏由算法研究员ZhuChunSHU主讲,专注于3D高斯重建技术(3DGS)的系统教学。课程从基础理论到前沿应用全面覆盖,包含:3DGS核心原理与Nerfstudio框架详解;静态/动态场景重建实战;表面重建技术;以及在自动驾驶、游戏引擎等领域的应用。课程特色包括手把手实操指导、论文代码精读、最新技术解析(如Mip-Splatting、4DGS等),帮助学员快速掌握这项革命性的3D重建技术。适合计算机视觉从业者及对3D建模感兴趣的开发者学习。原创 2025-08-03 21:46:28 · 13 阅读 · 0 评论 -
YOLO 通用”插入/替换自定义模块的全流程
新建或修改模型配置.yaml文件(如示例yaml复制编辑。原创 2025-08-02 14:13:09 · 11 阅读 · 0 评论 -
YOLOV8 环境自动安装脚本
本文介绍了算法研究员ZhuChunSHU的专业背景和成就,包括985硕士学历、多项竞赛获奖及发明专利。同时提供了一份YOLOv8训练的Conda环境自动配置脚本(CPU版),包含创建环境、安装PyTorch CPU版本和ultralytics库三个步骤。脚本具有错误检测功能,适合机器学习初学者快速搭建开发环境。作者表示将持续分享技术内容,欢迎读者关注专栏共同进步。原创 2025-07-27 20:23:57 · 14 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第25讲:ATM与高效动作Tokenization (如FAST):精准控制与推理加速的实现(代码优先深度解析)
摘要:本文探讨了机器人学习中的高效动作Tokenization方法,包括均匀量化、VQ-VAE和FAST算法。这些方法通过将连续动作离散化为Token,显著减少动作序列长度,提升模型推理速度。文章详细解析了各种策略的代码实现和数学原理,重点介绍了如何将VQ-VAE集成到VLA模型中实现动作预测。实验表明,这些方法在保证控制精度的同时,有效提升了训练效率,为构建高性能通用机器人模型提供了关键技术路径。原创 2025-07-25 14:19:59 · 21 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第24讲:Octo算法详解:大规模通用机器人模型的构建与多任务学习(深度代码解析与精准性提升)
【摘要】本文深入探讨了Octo通用机器人算法的精准性提升技术。作者ZhuChunSHU(985院校硕士、算法研究员)分享了基于Transformer架构的改进方案,重点包括:1)采用VisionTransformer和大型语言模型实现细粒度多模态特征提取;2)设计深度融合Transformer架构,整合多视角视觉、语言指令、机器人状态等多维信息;3)引入高斯混合模型(GMM)进行6D姿态动作预测,提升控制精度。文章详细解析了代码实现关键点,包括多模态编码器构建、注意力机制优化和GMM损失计算,为解决机器人操原创 2025-07-25 14:10:40 · 22 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第23讲:3D感知与VLA:深度融合的3D数据处理与架构实现——实现更精准
本文探讨了3D感知在视觉-语言-动作(VLA)模型中的精准应用,重点介绍了实现高精度空间理解的技术方案。作者首先阐述了3D信息在VLA模型中的核心价值,包括高精度几何重建、3D物体级理解和多模态特征融合等关键策略。随后详细解析了3D目标检测和6D位姿估计的实现方法,并提供了PointNet++的简化代码实现及其在VLA模型中的集成方案。文章还提出了进一步优化方向,包括多传感器融合、模型预测控制等,为提升VLA模型的精准操作能力提供了技术路线。作者作为算法研究员,分享了专业见解和实践经验。原创 2025-07-25 14:05:44 · 18 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第22讲:VLA模型泛化性、数据效率、虚实迁移、安全伦理与其他前沿技术(深度扩展)
《视觉-语言-动作模型的强化学习微调实践》 本文深入探讨了视觉-语言-动作(VLA)模型的核心挑战与解决方案。文章首先剖析了VLA模型面临的四大挑战:泛化性(处理新任务和环境的能力)、数据效率(降低训练数据需求)、虚实迁移(模拟到现实的转换)以及安全伦理问题。针对这些挑战,作者重点介绍了通过强化学习(RL)微调VLA模型的方法,详细阐述了行为克隆与RL算法(如PPO、SAC)的结合策略。 文章提供了完整的Python实现代码,包括自定义的Gymnasium环境模拟VLA输入、特征提取器设计以及PPO与行为克原创 2025-07-25 13:59:05 · 25 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第21讲:CogACT训练实践——分层VLA模型的深度训练策略与复杂代码实现
本文深入探讨了CogACT框架下分层视觉-语言-动作(VLA)模型的训练策略。作者从模型结构、训练方法到代码实现进行了全面分析,重点比较了分阶段训练和联合训练两种策略。分阶段训练通过逐步构建能力的模块化方法降低了复杂性,而联合训练则采用端到端优化实现全局对齐。文章详细介绍了模型架构设计、数据流处理、损失函数构建等关键技术,并提供了完善的代码实现,包括使用Gumbel-Softmax解决梯度穿透性问题。最后总结了训练对齐的关键技巧和注意事项,为机器人学习和具身智能领域的模型训练提供了实用指导。原创 2025-07-25 13:54:15 · 27 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第20讲:Pi0-CogACT算法详解——高保真动作生成与动作块(Action Chunks)的深度解析
本文深入解析Pi0-CogACT算法,重点介绍其核心技术FlowMatching实现高保真动作生成的方法,以及动作块(ActionChunks)在复杂连续控制中的应用。文章包含详细的数学原理说明和PyTorch实现代码,展示如何通过FlowMatching学习从噪声分布到目标动作的确定性映射,并利用动作块抽象实现高效规划和平滑执行。作者ZhuChunSHU(985硕士,算法研究员,曾获多项AI竞赛奖项)通过代码示例和理论分析,帮助读者理解该算法在机器人控制和决策中的优势,包括维度降低、平滑性保证和层次化控制原创 2025-07-25 13:46:21 · 146 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第19讲:RoboDual算法详解:协同双系统,融合通用与专家策略
本文介绍了RoboDual算法框架,这是一种融合通用策略(VLM生成)与专家策略(特定任务优化)的机器人控制方法。通用策略负责高层语义理解和任务分解,专家策略实现精确底层控制,通过智能协调器实现动态调度。文章详细阐述了算法设计理念、模块化架构,并提供了基于PyTorch的概念实现代码,展示任务分解、专家选择和重试机制。该框架兼具泛化能力和执行精度,为复杂机器人操作提供了新思路,未来可通过学习型协调器、持续学习等方法进一步优化。原创 2025-07-25 13:39:04 · 14 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第18讲:LCB算法详解:潜在代码桥接高层语义与低层细节的艺术
本文介绍了LCB(潜在代码桥梁)算法,这是一种通过中间潜在代码连接高层语义和低层细节的深度学习方法。文章详细阐述了LCB的设计思想、架构原理,并提供了完整的PyTorch实现代码,包括编码器、解码器的构建和训练过程。实验以MNIST数据集为例,展示了潜在空间的插值操作,验证了模型在图像重建和潜在空间操控方面的有效性。此外,文章还讨论了扩展优化方向,如正则化方法、架构调整和应用领域扩展。LCB算法通过构建这种"理解"与"表达"的桥梁,显著提升了深度学习模型的可解释性和可原创 2025-07-25 13:34:56 · 14 阅读 · 0 评论 -
具身智能中的(VLA)算法与实践 第17讲 分层端到端VLA,实现高层智能与低层控制的完美结合
摘要:本文由985院校硕士、算法研究员ZhuChunSHU分享分层端到端视觉-语言-动作(VLA)模型在机器人操作中的应用。文章探讨了如何结合高层语义理解(通过VLM实现)与低层精确控制,解决长序列复杂任务的挑战,包括任务分解、泛化能力和鲁棒性提升。详细介绍了分层VLA的架构设计、接口实现(附Python示例代码),以及低层策略的模仿学习/强化学习方法。同时分析了当前技术面临的语义鸿沟、实时性等挑战,并展望了多模态感知、自主学习等未来发展方向。本文为构建智能机器人系统提供了理论框架和实践指导。原创 2025-07-25 13:31:41 · 34 阅读 · 0 评论 -
彻底解决 “Dimension of ABlock be a multiple of 32” 错误
《深度学习模型报错:ABlock维度必须为32的倍数详解》摘要:本文针对深度学习训练中常见的"AssertionError: Dimension of ABlock be multiple of 32"错误进行详细解析。作者首先用"水管"比喻形象解释通道数、ABlock模块和扩展系数等核心概念,指出错误三大常见原因:输出通道数非32倍数、扩展系数搭配错误及拼接后通道数不合法。提供了3步解决方案:1)定位出错的ABlock模块;2)运用"输出通道数×扩展系数=原创 2025-07-24 17:46:36 · 13 阅读 · 0 评论 -
YOLO版本的通用设计和计算原则
本文介绍了YOLO系列目标检测模型的通用设计原则与架构特点。首先阐述了YOLO"一次检测"的核心理念,包括其模块化的网络结构、网格划分系统和多尺度预测机制。重点解析了模型三大组件:主干网络的特征提取、颈部网络的多尺度特征融合,以及检测头的最终预测输出。详细说明了depth_multiple和width_multiple两个核心缩放参数的计算方法,以及锚框优化的K-means聚类技术。最后给出了从需求分析、模型选择到参数调整的完整定制流程,强调应先从官方小模型开始,通过迭代训练逐步优化。文原创 2025-07-24 17:36:21 · 12 阅读 · 0 评论 -
通过修改YOLOv11的YAML架构改进模型:从基础概念到高级定制引言:YOLOv11架构定制的必要性与潜力
摘要:本文深入解析YOLOv8/YOLOv11架构的YAML配置文件定制方法,探讨如何通过调整骨干网络、颈部网络和头部网络实现模型优化。文章详细介绍了核心模块(Conv、C2f、SPPF)的功能与参数配置,并提供了模型深化(增加层数/通道数)与简化(轻量化设计)的实践方案。重点讲解了如何通过修改depth_multiple和width_multiple参数实现模型缩放,以及集成注意力机制等创新组件的实现方法。同时针对常见错误(路径错误、索引不匹配等)提供解决方案,强调YAML配置与Python实现的协同工作原创 2025-07-24 17:30:26 · 14 阅读 · 0 评论 -
【YOLOv12改进涨点】[特殊字符] 在 YOLOv12s 中集成 SCA 模块:提升感知能力的完整实践教程
【摘要】本文详细介绍了在YOLOv12s目标检测模型中集成SCA(空间与通道注意力)模块的技术方案。内容涵盖SCA模块原理、环境配置、代码实现(含通道与空间注意力子模块)、YOLOv12模型解析器修改、YAML结构调整方法,以及完整的训练验证流程。实验数据显示,集成SCA后模型mAP提升2.6%(74.2%→76.8%),小目标召回率提高5.6%,参数量仅增加0.3M。文章提供了可复现的代码实现和优化建议,适合计算机视觉开发者参考应用。(149字)原创 2025-07-23 21:52:30 · 16 阅读 · 0 评论 -
【YOLOv12】 添加自定义模块(以 CBAM 为例)的详细教程
本文介绍了如何在YOLOv12框架中集成自定义CBAM注意力模块。作者详细讲解了实现步骤:1. 创建自定义模块目录结构;2. 编写CBAM模块代码(包含通道和空间注意力);3. 修改模型解析逻辑以识别新模块;4. 提供完整的YAML配置示例,说明在P3/P4/P5特征层插入CBAM的方法;5. 给出训练和验证代码模板。该方法可推广至其他自定义模块的集成,为算法研究人员提供了在YOLOv12框架中快速验证网络结构创新的实用方案。原创 2025-07-16 15:09:18 · 52 阅读 · 0 评论 -
[YOLOV12]在YOLOv12中引入MSCAAttention
【摘要】本文详细介绍了将MSCAAttention模块集成到YOLOv12目标检测模型的方法。作者首先介绍了MSCAAttention多尺度注意力机制的实现原理,包括5x5、7x1等多尺度卷积核的设计。随后提供了具体的代码实现步骤,包括在YOLOv12代码库中添加模块、修改tasks.py文件以及给出三种不同的yaml配置文件方案(MSCA1、MSCA2、MSCA3),分别适用于增强深层特征、优化多尺度输出和全面提升特征质量等不同场景。最后强调了重新训练模型和参数调整的重要性,并鼓励读者进行实验验证。教程适原创 2025-07-15 17:48:43 · 23 阅读 · 0 评论 -
TensorFlow 1.15配合CUDA 10.0和cuDNN 7.x在Windows上配置GPU 1050TI 4G
【摘要】本文详细介绍了在Windows10系统上配置GTX1050Ti显卡以运行TensorFlow1.15GPU版本的完整流程。内容包括:安装NVIDIA驱动、CUDA10.0工具包和cuDNN7.x库的具体步骤,环境变量配置方法,以及TensorFlow安装与验证过程。作者通过实测展示了配置前后的运行日志对比,最终成功实现GPU加速(输出True),并确认了4GB显存的可用性。文章还附带了作者简介(985硕士、算法研究员、多项比赛获奖和专利持有者),体现了专业的技术背景。文末邀请读者关注专栏共同探索技术原创 2025-07-01 19:06:25 · 32 阅读 · 0 评论 -
YOLOv10改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
YOLOv10创新改进策略研究 本文深入探讨了YOLOv10目标检测模型的创新改进方法,从三个维度提出优化方案:1)核心组件优化,包括骨干网络轻量化、注意力机制改进和检测头创新设计;2)训练策略优化,涵盖损失函数改进、数据增强策略和优化器选择;3)应用场景拓展,针对少样本学习、小目标检测和跨模态融合等特殊场景提出定制化解决方案。文章提供了详细的代码实现示例,如ConvNeXtV2模块集成、Wise-IoU损失函数应用等,为研究者在YOLOv10基础上开展创新研究提供了系统指导。这些改进策略既可提升模型性能,原创 2025-06-30 19:39:52 · 58 阅读 · 0 评论 -
深入理解目标追踪中的SSD:算法实现与实际应用
摘要:本文介绍了基于SSD(单发多框检测器)的目标追踪算法实现。SSD通过多尺度特征图和默认框机制高效完成目标检测,在目标追踪中扮演检测器角色,提供初始位置和持续检测结果。文章详细解析了SSD追踪流程:目标初始化、检测匹配、更新处理等环节,并针对遮挡和丢失情况提出解决方案。通过可视化代码示例展示了SSD追踪器的实际工作过程,包括IOU匹配、状态更新等关键操作。该算法结合了SSD的高效检测能力和追踪器的持续跟踪能力,为复杂场景下的目标追踪提供了有效解决方案。原创 2025-06-25 18:43:10 · 28 阅读 · 0 评论 -
论文解读:Focal Loss for Dense Object Detection——深挖单阶段目标检测的精度瓶颈与革命性突破
Focal Loss for Dense Object Detection》这篇由 Tsung-Yi Lin、Priya Goyal、Ross Girshick、Kaiming He 和 Piotr Dollár 共同撰写,并于 2017 年在国际计算机视觉会议(ICCV)上发表的里程碑式论文,深入剖析了单阶段(one-stage)目标检测器在训练过程中遇到的核心难题——极端的类别不平衡问题。文章指出,正是这种不平衡导致了单阶段检测器在精度上无法企及两阶段(two-stage)检测器。原创 2025-06-20 16:05:26 · 37 阅读 · 0 评论 -
YOLOV5模型评估与性能优化
《YOLOv5模型评估与性能优化指南》摘要 本文详细介绍了YOLOv5目标检测模型的评估方法与性能优化策略。首先解析了关键评估指标:精确率(Precision)衡量检测准确性,召回率(Recall)评估覆盖能力,mAP综合反映模型性能,其中[email protected]:0.95是最严格的评估标准。通过解读训练生成的results.png曲线图,可判断模型是否存在欠拟合或过拟合。 优化策略包括:调整学习率(推荐使用OneCycleLR调度器)、适配批大小、增强数据多样性(如Mosaic增强),以及根据需求选择不同规模的模型原创 2025-06-20 14:22:19 · 44 阅读 · 0 评论 -
YOLOv5 源码深度解析
YOLOv5源码深度解析与核心架构分析 YOLOv5作为基于PyTorch的高效目标检测框架,其核心优势体现在模块化设计、高效算法和工程优化三方面。模型采用经典的Backbone-Neck-Head结构,通过YAML配置文件实现动态构建,其中: 核心模块:C3组件通过分支结构平衡计算效率与特征丰富性;SPPF模块用顺序池化替代传统SPP,减少33%计算量 损失函数:融合CIoU定位损失、动态置信度BCE损失和可选FocalLoss,配合多网格分配策略提升小目标检测 工程创新:Mosaic数据增强显著提升泛化原创 2025-06-20 13:46:57 · 27 阅读 · 0 评论 -
YOLOv5 环境配置、数据标注、自定义数据集 完整教程 附自动化执行脚本
《YOLOv5目标检测实战指南》摘要:本文系统介绍了YOLOv5目标检测模型的完整实践流程。首先详细讲解Conda环境搭建、PyTorch安装及YOLOv5项目部署方法。重点阐述了自定义数据集的准备过程,包括使用LabelImg工具进行标注、数据集划分策略,并提供自动化脚本生成YOLO格式标注文件和配置文件。在训练环节,深入解析了批大小、学习率等关键参数设置,以及通过TensorBoard监控训练过程的方法。文章还包含预训练模型的使用指南,涵盖图片、视频和实时摄像头的检测演示。通过清晰的代码示例和参数说明,原创 2025-06-20 13:06:23 · 267 阅读 · 0 评论 -
YOLOv10 原理深入解析 (Deep Dive into YOLOv10 Principles)
YOLOv10 的出现标志着 YOLO 系列在。原创 2025-05-20 09:53:11 · 899 阅读 · 0 评论 -
YOLOv10 源码解析 (YOLOv10 Source Code Analysis)
PyTorch 框架的灵活性和简洁性使得 YOLOv10 的代码相对易读。我们将从项目结构入手,逐步深入到模型构建、损失函数、数据处理以及训练和推理流程的关键代码模块。首先,让我们 YOLOv10 的官方仓库(假设其结构与 Ultralytics 的 YOLOv8 类似,因为它很可能基于此框架进行开发):Bash打开项目目录,你通常会看到以下核心文件和文件夹:核心关注点:我们将按照数据流和模型构建的顺序进行解析。YOLOv10 的模型定义通常位于 中,而组成模型的各种基础模块则在 中。 -原创 2025-05-20 10:16:35 · 939 阅读 · 0 评论 -
手把手教你搭建YOLOv10 环境 详细教程
运行任何深度学习模型,尤其是基于 PyTorch 的模型,都需要一套稳定的 Python 环境和相应的依赖库。如果你计划使用 GPU 进行加速,那么 CUDA 和 cuDNN 的正确配置是至关重要的。原创 2025-05-20 10:21:22 · 1100 阅读 · 0 评论 -
YOLOv10 实战指南 源码解析
现在,我们将使用你准备好的数据集来训练 YOLOv10 模型。NVIDIA 提供的高性能推理优化器。可以将 ONNX 模型进一步优化为 TensorRT 引擎,在 NVIDIA GPU 上获得极致性能。YOLOv10 通常支持直接导出为 TensorRT 格式。Intel 提供的工具套件,用于在 Intel 硬件(CPU, GPU, VPU)上优化和部署模型。在浏览器中运行 ONNX 模型,实现 Web 端部署。原创 2025-05-20 10:26:52 · 979 阅读 · 0 评论 -
YOLOv10 高级调优策略 附源码
YOLOv10 作为一个先进的端到端目标检测器,提供了强大的基线性能。通过本节介绍的超参数调优、模型压缩、多尺度训练、分布式训练以及基于 YOLOv10 的改进策略,你可以根据自己的需求和资源,进一步优化模型,使其在特定应用中达到卓越的表现。原创 2025-05-20 10:29:33 · 809 阅读 · 0 评论 -
深度学习目标检测算法汇总
通过网盘分享的文件:主系列yolov1-v12YOLO11YOLO12代码链接:https://github.com/sunsmarterjie/yolov12。原创 2025-05-20 11:24:52 · 611 阅读 · 0 评论 -
第二章:YOLOv11 源码深度解析
通过极致的模型压缩和对各种硬件推理引擎的深度适配,YOLOv11 能够真正在边缘设备、移动端等资源受限的环境中实现高性能的实时目标检测,使其成为无处不在的智能视觉解决方案。这些训练策略的融合,使得 YOLOv11 不仅能够从标注数据中高效学习,还能利用大规模的无标注数据,这对于降低对标注数据的依赖、提升模型泛化能力和在低资源场景下的应用具有重要意义。颈部网络是连接骨干网络和检测头的桥梁,它的任务是有效地融合来自骨干网络的不同尺度的特征图,生成一个语义和空间信息都更加丰富的特征金字塔。原创 2025-05-22 10:21:13 · 706 阅读 · 0 评论 -
YOLOv11 性能评估与横向对比
通过深入的数据分析和实践指导,我们不仅直观地展现了 YOLOv11 在继承 YOLO 系列速度基因的同时,如何在精度、泛化能力和鲁棒性方面取得显著突破,更重要的是,为读者提供了如何根据自身需求,解读这些性能数据并做出模型选择和部署决策的宝贵经验。本章将详细阐述 YOLOv11 在各项性能指标上的表现,并将其与 YOLO 家族的前代以及其他领域领先的目标检测算法进行全面、深入的横向对比,从而直观展现 YOLOv11 如何实现其“极致速度、更高精度、更强泛化”的设计目标。原创 2025-05-22 10:26:04 · 1106 阅读 · 0 评论