【leetcode 先序遍历】Binary Tree Preorder Traversal

本文详细介绍了二叉树先序遍历的迭代方法,通过使用栈来实现非递归的遍历过程,提高了效率并避免了递归带来的潜在问题。包括代码实现、工作原理和对比递归方法的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、题目

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

2、分析

二叉树先序遍历(依序访问结点:根-左-右),递归方法的代码简洁,但是效率低于迭代方法,题目note也说了,Recursive solution 不值一提。
迭代法,可以建一个栈,用于存放那些未处理的结点,具体过程可以参考下图:


3、代码

#递归方法

<span style="font-size:18px;">/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
/*递归方法  性能远差于迭代方法*/
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> result,left_vec,right_vec;
        if(!root) return result;                     //检查树是否为空
        result.push_back(root->val);
        left_vec=preorderTraversal(root->left);      //对左子树递归调用preorderTraversal()
        right_vec=preorderTraversal(root->right);    //对右子树..
        for(auto iter=left_vec.begin();iter!=left_vec.end();iter++) 
            result.push_back(*iter);
        for(auto i=right_vec.begin();i!=right_vec.end();i++) 
            result.push_back(*i);
        return result;
    }
};</span>


#迭代方法

<span style="font-size:18px;">class Solution {
public:
/*迭代方法 栈*/
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> result;           //存放先序遍历结果
        stack<TreeNode *> stk;        //存放未处理的结点
        TreeNode *p=root;
        if(p) stk.push(p);            //如果树为空,stk初始为空,接下来的程序并未执行,返回的result为空
        while(!stk.empty())
        {
            p=stk.top();
            stk.pop();
            result.push_back(p->val);  //取出栈顶元素,并将val保存进result
            
            if(p->right)  stk.push(p->right);  
            if(p->left)   stk.push(p->left);     //如果右左孩子不为空,则push进栈,必须先push右孩子再push左
        }
        return result;
    }
};</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值