ZOJ-1508 Intervals

本文介绍了一种解决特定区间与整数计数问题的方法,通过构建特殊的图结构并应用SPFA算法求解最短路径,从而得到最小满足条件的整数集合大小。该算法在时间复杂度和空间复杂度上都有优秀表现,特别适用于大规模数据集的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Intervals

Time Limit: 10 Seconds      Memory Limit: 32768 KB

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

Write a program that:

> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

> writes the answer to the standard output.


Input

The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

Process to the end of file.


Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.


Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1


Sample Output

6

————————————————————集训24.2的分割线————————————————————

前言:题目和AOJ-517 序列基本是一样的。改一改就行了。

代码如下:

/*
ID: j.sure.1
PROG:
LANG: C++
*/
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
/****************************************/
const int N = 5e5+5, M = 4*N;
int head[N], dis[N], q[N], tot, m;
struct Node {
	int v, w, next;
}edge[M];
bool inq[N];

void add(int u, int v, int w)
{
	edge[tot] = (Node){v, w, head[u]};
	head[u] = tot++;
}

void spfa(int st, int R)
{
	for(int i = st; i <= R; i++) {
		dis[i] = -INF;
		inq[i] = false;
	}
	dis[st] = 0;
	int fron = 0, rear = 1;
	q[fron] = st;
	inq[st] = true;
	while(fron < rear) {
		int u = q[fron%N]; fron++;
		inq[u] = false;
		for(int i = head[u]; i != -1; i = edge[i].next) {
			int v = edge[i].v;
			if(dis[v] < dis[u] + edge[i].w) {
				dis[v] = dis[u] + edge[i].w;
				if(!inq[v]) {
					q[rear%N] = v; rear++;
					inq[v] = true;
				}
			}
		}
	}
}

int main()
{
#ifdef J_Sure
//	freopen("000.in", "r", stdin);
//	freopen(".out", "w", stdout);
#endif
	int n;
	while(~scanf("%d", &m)) {
		tot = 0;
		memset(head, -1, sizeof(head));
		int l, r, w, R = -1, L = N;
		for(int i = 0; i < m; i++) {
			scanf("%d%d%d", &l, &r, &w);
			r++;
			R = max(R, r);
			L = min(L, l);
			add(l, r, w);
		}
		for(int i = L+1; i <= R; i++) {
			add(i, i-1, -1);
			add(i-1, i, 0);
		}
		spfa(L, R);
		printf("%d\n", dis[R]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值