You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,
> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,
> writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.
Process to the end of file.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
————————————————————集训24.2的分割线————————————————————
前言:题目和AOJ-517 序列基本是一样的。改一改就行了。
代码如下:
/*
ID: j.sure.1
PROG:
LANG: C++
*/
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
/****************************************/
const int N = 5e5+5, M = 4*N;
int head[N], dis[N], q[N], tot, m;
struct Node {
int v, w, next;
}edge[M];
bool inq[N];
void add(int u, int v, int w)
{
edge[tot] = (Node){v, w, head[u]};
head[u] = tot++;
}
void spfa(int st, int R)
{
for(int i = st; i <= R; i++) {
dis[i] = -INF;
inq[i] = false;
}
dis[st] = 0;
int fron = 0, rear = 1;
q[fron] = st;
inq[st] = true;
while(fron < rear) {
int u = q[fron%N]; fron++;
inq[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].v;
if(dis[v] < dis[u] + edge[i].w) {
dis[v] = dis[u] + edge[i].w;
if(!inq[v]) {
q[rear%N] = v; rear++;
inq[v] = true;
}
}
}
}
}
int main()
{
#ifdef J_Sure
// freopen("000.in", "r", stdin);
// freopen(".out", "w", stdout);
#endif
int n;
while(~scanf("%d", &m)) {
tot = 0;
memset(head, -1, sizeof(head));
int l, r, w, R = -1, L = N;
for(int i = 0; i < m; i++) {
scanf("%d%d%d", &l, &r, &w);
r++;
R = max(R, r);
L = min(L, l);
add(l, r, w);
}
for(int i = L+1; i <= R; i++) {
add(i, i-1, -1);
add(i-1, i, 0);
}
spfa(L, R);
printf("%d\n", dis[R]);
}
return 0;
}