图像行宽四字节对齐

知识要点:图像行宽四字节对齐。
背景:以前都是使用opencv的Mat类型进行图像数据的操作,后面碰到函数对图像数据的输入类型为BYTE*,碰到图像复原显示后出现图像的扭曲或者重影。图像四字节对齐是如果图像宽不是4的倍数,那么opencv(其实大部分其他库也一样)会对每行数据进行填充(为了加快存储和读取,计算机读取数据以4字节为单位),使其填充为4的倍数,所以在获取每行图像首地址时的偏移量是widthstep(一定是4的倍数)而不一定是width(当width是4的倍数时,widthstep=width)。例如,
3*3的未填充图像
1  2  3
4  5  6
7  8  9 

那么填充后为
1  2  3  @
4  5  6  @
7  8  9  @

如果将3*3的未填充图像放到存储空间中为1  2  3  4  5  6  7  8  9

填充后的图像为1  2  3  @  4  5  6  @  7  8  9  @
    由于在Mat中没有widthstep的成员变量,需要自己计算widthstep。图像为Mat ImgwidthStep计算如下:

           widthStep=(img.cols*img.elemSize()+3)/4*4;
以下为像素访问的小例子,其功能是从Mat类型的中读取图像数据。并将图像数据保存到BYTE类型的数组中。最后将BYTE数据写入Mat类型中。并进行显示。功能比较简单,其目的主要是弄清楚图像行宽四字节对齐。方便以后读取出BYTE数据后进行处理。
#include<opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
typedef unsigned char BYTE;
//获取图像数据,并将获取的图像数据放入新建的图像中。
int main()
{
	Mat img = imread("图像宽度4字节.png");

	BYTE *tSrc;
	int tSheight = 0, tSwidth = 0, tDheight = 0, tDwidth = 0;

	//测试的源图像高度和宽度
	tSheight = img.rows;
	tSwidth = img.cols;

	//测试的目的图像高度和宽度
	tDheight = tSheight;
	tDwidth = tSwidth;

	tSrc = new BYTE[tSheight*tSwidth * 3];

	//计算行宽
	int widthStep = (img.cols*img.elemSize() + 3) / 4 * 4;


	//获取图像数据
	for (int i = 0; i < tSheight; i++)
	{
		for (int j = 0; j < tSwidth; j++)
		{
			*(tSrc + i*tSwidth*3 + 3 * j + 0) = *(img.data + i*widthStep + 3 * j + 0);
			*(tSrc + i*tSwidth*3 + 3 * j + 1) = *(img.data + i*widthStep + 3 * j + 1);
			*(tSrc + i*tSwidth*3 + 3 * j + 2) = *(img.data + i*widthStep + 3 * j + 2);

		}
	}

	//恢复原始图像并显示
	Mat outimg = Mat(tDheight, tDwidth, CV_8UC3);


	for (int i = 0; i < tDheight; i++)
	{
		for (int j = 0; j < tDwidth; j++)
		{

			*(outimg.data + i*widthStep + j * 3 + 0) = tSrc[i*tDwidth*3 + j * 3 + 0];
			*(outimg.data + i*widthStep + j * 3 + 1) = tSrc[i*tDwidth*3 + j * 3 + 1];
			*(outimg.data + i*widthStep + j * 3 + 2) = tSrc[i*tDwidth*3 + j * 3 + 2];

		}
	}



	imshow("原始图像", img);

	imshow("恢复的原始图像", outimg);

	waitKey(0);

	return 0;
}


效果图:

怕忘记,将其记录之。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值