
算法
TengTG
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
EM算法的学习,看完这几篇就懂了
em算法是针对有隐藏变量的case, 然后先估算隐藏变量的概率分布,再估算模型参数, 然后一个不断迭代的过程http://blog.csdn.net/zouxy09/article/details/8537620先看从最大似然估计到em算法。 没有隐藏变量就是极大似然估计,有隐藏变量就是用em算法求解。jensen不等式的引入; 凹函数凸函数推导证明见 http原创 2017-01-18 11:50:12 · 672 阅读 · 0 评论 -
统计学习方法李航---第一章
变量解读输入空间输出空间特征空间假设空间, 输入空间到输出空间映射的集合。可以是决策函数的集合,也可以是条件概率的集合,分别为非概率模型和概率模型。损失函数,f(x)和y的非负值函数L(f(x), y),用于描述两者的差异, 其越小越好,经验风险(经验损失), 损失函数在测试集上的平均值,除了经验风险之外,为了防止过拟合,引入了结构风险,J(f) 代表了模型原创 2016-11-17 16:11:59 · 733 阅读 · 0 评论