GAP | tensorflow 实现 Class Activation Map 用于 分类目标定位

本文深入剖析《LearningDeepFeaturesforDiscriminativeLocalization》论文,介绍如何利用卷积神经网络和CAM技术实现图像分类与定位,同时解释网络决策过程。通过实例展示肺炎诊断系统的准确性,强调全局平均池化和全连接层在减少参数量及提高分类效果中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对《Learning Deep Features for Discriminative Localization》的剖析

一个最近的使用例子是吴恩达公司做的肺炎诊断准确率超过人类医生

在这篇论文中,认为图片在经过卷积层的特征提取后,通过CAM,除了不弱的分类精度外,还能对分类的依据进行定位,相当于诠释网络是如何做出分类判断的。
CAM的核心部分如下图:


在卷积层之后,使用了一个叫GAP的池,全称是global average pooling。全局平均池的优点就是大量减少参数量,以及保持图像的空间结构。
尾端使用全连接层full connected layer进行分类输出。该层能够针对每一个分类有一套权重。

使用 Inception V3 举例:
该网络经过卷积层后,大小为(8x8x2048),经过GAP层后(1x1x2048),全连接层权重为(2048x10)。10个类别分别对应着10个全连接层权重,每个类别对应2048个权重。
生成热力图时,将图片卷积后的(8x8x2048)和某一类别全连接层权重(1x2048)的乘积后得到热力图(8x8)。将该热力图暴力展开成所需要的大小即可。


该例所使用的代码

参考:https://blog.csdn.net/qq_32201847/article/details/78902338

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值