tensorflow:embedding_lookup

本文通过一个具体的TensorFlow代码实例介绍了embedding_lookup函数的作用及其使用方法。embedding_lookup主要用于查找词嵌入向量,该函数可以高效地从大型词汇表中检索对应的嵌入向量,并在训练过程中更新这些向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

embedding_lookup

import tensorflow as tf

embedding = tf.get_variable("embedding", initializer=tf.ones(shape=[10, 5]))
look_uop = tf.nn.embedding_lookup(embedding, [1, 2, 3, 4])
# embedding_lookup就像是给 其它行的变量加上了stop_gradient
w1 = tf.get_variable("w", shape=[5, 1])

z = tf.matmul(look_uop, w1)

opt = tf.train.GradientDescentOptimizer(0.1)

#梯度的计算和更新依旧和之前一样,没有需要注意的
gradients = tf.gradients(z, xs=[embedding])
train = opt.apply_gradients([(gradients[0],embedding)])

#print(gradients[4])

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    print(sess.run(train))
    print(sess.run(embedding))
[[ 1.          1.          1.          1.          1.        ]
 [ 0.90580809  1.0156796   0.96294552  1.01720285  1.08395708]
 [ 0.90580809  1.0156796   0.96294552  1.01720285  1.08395708]
 [ 0.90580809  1.0156796   0.96294552  1.01720285  1.08395708]
 [ 0.90580809  1.0156796   0.96294552  1.01720285  1.08395708]
 [ 1.          1.          1.          1.          1.        ]
 [ 1.          1.          1.          1.          1.        ]
 [ 1.          1.          1.          1.          1.        ]
 [ 1.          1.          1.          1.          1.        ]
 [ 1.          1.          1.          1.          1.        ]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值