Vision - 文本检测算法 CRAFT 和 合成文本数据集 SynthText 教程

本文介绍了CRAFT字符检测算法,包括其原理和论文阅读,并探讨了CRAFT在PyTorch的实现。文章还提到了SynthText数据集的详细信息,包括数据集大小和如何使用。同时,提供了训练模型和测试模型的步骤,以及对中文数据集和ICDAR 2015数据集的介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/117226123

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


CRAFT

Character Region Awareness for Text Detection (CRAFT),文本检测算法,通过每个字符区域,以及字符之间的亲和力,检测文本区域。CRAFT 算法的核心,在于处理任意形状的文本,包括弯曲、长形或变形的文字。基于 VGG16 的全卷积神经网络模型,计算区域分数和亲和力分数,其中区域分数用于定位单个字符,而亲和力分数则用于将单个字符组合成文本区域。提高对于复杂自然场景下,文本检测的灵活性和准确性,而且还能适应不同尺度的文本,从大型广告牌到小型标签都能有效识别。CRAFT 算法的实现简单,通过在二值化后的字符区域和亲和力分数图上,找到最小边界矩形来获得文本的边界框。

论文

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值