PyTorch笔记 - Convolution卷积运算的原理 (3)

本文深入探讨了PyTorch中卷积运算的原理,涉及5个关键参数:input、kernel、bias、stride和padding。强调了在计算output时,padding已在input中考虑,不需要额外增加。通过行向量与列向量相乘的方式解释了矩阵乘法在卷积中的作用,并介绍了使用torch.flatten、numel和reshape等函数进行操作的方法。文章还比较了flatten input版本与直接矩阵相乘的效率优势,并探讨了在处理batchsize和channel维度时的二维卷积实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积操作包括5个参数:input、kernel、bias、stride、padding

  • input已包括padding,计算ouput时,不要再加上2*padding
  • output的索引是i/stride,j/stride,因为i和j的步长是stride
def matrix_multiplication_for_conv2d(input, kernel, bias=0, stride=1, padding=0<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值