AI4S - 《人工智能与药物设计》药物设计相关数据库的概述 (1)

本文深入探讨了聚类分析作为数据挖掘中的重要技术,阐述了其在大数据处理中如何帮助发现数据的内在结构和模式。通过实例展示了K-means、层次聚类等常见算法的工作原理和应用场景,揭示了聚类在市场细分、客户画像构建等方面的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/139444006

免责声明:本文来源于个人知识与开源资料,仅用于学术交流,不包含任何商业技术,欢迎相互学习,不支持转载。


药物设计 是指使用化学、生物学、分子生物学等方法,对于已知的药物或天然产物进行改造或创新,以提高其药理活性、安全性和生物利用度的过程。药物设计是新药开发的重要环节,也是医药行业的核心竞争力之一。在药物发现与药物设计领域中,包括三类的数据库资源,即:

  1. 生物大分子结构数据库:数据源最多,包括蛋白质、蛋白质复合物、特定功能和结构的蛋白质、多肽等。
  2. 小分子结构数据库:综合性库、分子晶体结构、天然产物、虚拟筛选、算法生成等。
  3. 生物活性数据库

这些数据库的发展,也反映出药物研发的趋势,例如 GPCR、激酶、金属酶、PROTAC 等。需要高效准确的利用数据资源,充分挖掘价值,用于药物发现与药物设计领域。全部药物设计的相关数据库,思维导图,如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值