TensorFlow GPU 与 源码编译

本文介绍如何根据服务器的GPU版本定制编译TensorFlow,包括检查GPU、CUDA及cuDNN版本,安装必要组件,配置及编译TensorFlow源码,并验证编译后的TensorFlow是否正确安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中,服务器的GPU可以极大地加快算法的执行速度,不同版本的TensorFlow默认使用的GPU版本不同,导致与服务器无法兼容,这就需要根据服务器的GPU版本,重新编译TensorFlow源码。

GPU

欢迎Follow我的GitHub:https://github.com/SpikeKing

检查GPU

检测服务器的GPU,用于在编译中选择合适的GPU版本。CUDA是NVIDIA发布的GPU上的并行计算平台和模型,多数GPU的运行环境都需要CUDA的支持。

导入CUDA的环境变量,具体的cuda版本,在/usr/local中查看。

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

检查CUDA版本,使用nvcc命令,当前CUDA版本是8.0.61:

nvcc  --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61

或,查看version文件,当前CUDA版本是8.0.61:

cat /usr/local/cuda/version.txt

CUDA Version 8.0.61

检查cuDNN的版本,当前cuDNN版本是6.0.21:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

#define CUDNN_MAJOR      6
#define CUDNN_MINOR      0
#define CUDNN_PATCHLEVEL 21
--
#define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"

检测GPU数量和型号,当前服务器的GPU数量是4:

nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26                 Driver Version: 375.26                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|============
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值