在深度学习中,服务器的GPU可以极大地加快算法的执行速度,不同版本的TensorFlow默认使用的GPU版本不同,导致与服务器无法兼容,这就需要根据服务器的GPU版本,重新编译TensorFlow源码。
欢迎Follow我的GitHub:https://github.com/SpikeKing
检查GPU
检测服务器的GPU,用于在编译中选择合适的GPU版本。CUDA是NVIDIA发布的GPU上的并行计算平台和模型,多数GPU的运行环境都需要CUDA的支持。
导入CUDA的环境变量,具体的cuda版本,在/usr/local
中查看。
export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
检查CUDA版本,使用nvcc命令,当前CUDA版本是8.0.61:
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61
或,查看version文件,当前CUDA版本是8.0.61:
cat /usr/local/cuda/version.txt
CUDA Version 8.0.61
检查cuDNN的版本,当前cuDNN版本是6.0.21:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 6
#define CUDNN_MINOR 0
#define CUDNN_PATCHLEVEL 21
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
检测GPU数量和型号,当前服务器的GPU数量是4:
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26 Driver Version: 375.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|============