Kubernetes,又称为 k8s(首字母为 k、首字母与尾字母之间有 8 个字符、尾字母为 s,所以简称 k8s)或者简称为 “kube” ,是一种可自动实施 Linux 容器操作的开源平台。它可以帮助用户省去应用容器化过程的许多手动部署和扩展操作。也就是说,您可以将运行 Linux 容器的多组主机聚集在一起,由 Kubernetes 帮助您轻松高效地管理这些集群。而且,这些集群可跨公共云、私有云或混合云部署主机。因此,对于要求快速扩展的云原生应用而言(例如借助 Apache Kafka 进行的实时数据流处理),Kubernetes 是理想的托管平台。
Kubernetes 最初由 Google 的工程师基于 go 语言开发和设计出来并于2014年6月开源。Google 是最早研发 Linux 容器技术的企业之一,曾公开分享介绍 Google 如何将一切都运行于容器之中(这是 Google 云服务背后的技术)。Google 每周会启用超过 20 亿个容器——全都由内部平台 Borg 支撑。Borg 是 Kubernetes 的前身,多年来开发 Borg 的经验教训成了影响 Kubernetes 中许多技术的主要因素。
趣闻:Kubernetes 徽标的七个轮辐代表着项目最初的名称“九之七项目”(Project Seven of Nine)。
红帽是第一批与 Google 合作研发 Kubernetes 的公司之一,作为 Kubernetes 上游项目的第二大贡献者,我们甚至在这个项目启动之前就已参与其中。2015 年,Google 将 Kubernetes 项目捐赠给了新成立的云原生计算基金会。
1. 为什么需要 kubernetes
真正的生产型应用会涉及多个容器。这些容器必须跨多个服务器主机进行部署。Kubernetes 可以提供所需的编排和管理功能,以便您针对这些工作负载大规模部署容器。借助 Kubernetes 编排功能,您可以构建跨多个容器的应用服务、跨集群调度、扩展这些容器,并长期持续管理这些容器的健康状况。
Kubernetes 还需要与联网、存储、安全性、遥测和其他服务集成整合,以提供全面的容器基础架构。
当然,这取决于您如何在您的环境中使用容器。Linux 容器中的基本应用将它们视作高效、快速的虚拟机。一旦把它部署到生产环境或扩展为多个应用,您显然需要许多托管在相同位置的容器来协同提供各种服务。随着这些容器的累积,您运行环境中容器的数量会急剧增加,复杂度也随之增长。
Kubernetes 通过将容器分类组成 “容器集” (pod),解决了容器增殖带来的许多常见问题容器集为分组容器增加了一个抽象层,可帮助您调用工作负载,并为这些容器提供所需的联网和存储等服务。Kubernetes 的其它部分可帮助您在这些容器集之间达成负载平衡,同时确保运行正确数量的容器,充分支持您的工作负载。
如果能正确实施 Kubernetes,再辅以其它开源项目(例如 Atomic 注册表、Open vSwitch、heapster、OAuth 以及 SELinux),您就能够轻松编排容器基础架构的各个部分。
2. kubernetes 有哪些用途
在您生产环境中使用 Kubernetes 的主要优势在于,它提供了一个便捷有效的平台,让您可以在物理机和虚拟机集群上调度和运行容器。更广泛一点说,它可以帮助您在生产环境中,完全实施并依托基于容器的基础架构运营。由于 Kubernetes 的实质在于实现操作任务自动化,所以您可以将其它应用平台或管理系统分配给您的许多相同任务交给容器来执行。
利用 Kubernetes,您能够达成以下目标:
- 跨多台主机进行容器编排。
- 更加充分地利用硬件,最大程度获取运行企业应用所需的资源。
- 有效管控应用部署和更新,并实现自动化操作。
- 挂载和增加存储,用于运行有状态的应用。
- 快速、按需扩展容器化应用及其资源。
- 对服务进行声明式管理,保证所部署的应用始终按照部署的方式运行。
- 利用自动布局、自动重启、自动复制以及自动扩展功能,对应用实施状况检查和自我修复。
但是,Kubernetes 需要依赖其它项目来全面提供这些经过编排的服务。因此,借助其它开源项目可以帮助您将 Kubernetes 的全部功用发挥出来。这些功能包括:
- 注册表,通过 Atomic 注册表或 Docker 注册表等项目实现。
- 联网,通过 OpenvSwitch 和智能边缘路由等项目实现。
- 遥测,通过 heapster、kibana、hawkular 和 elastic 等项目实现。
- 安全性,通过 LDAP、SELinux、RBAC 和 OAUTH 等项目以及多租户层来实现。
- 自动化,参照 Ansible 手册进行安装和集群生命周期管理。
- 服务,可通过自带预建版常用应用模式的丰富内容目录来提供。
3. kubernetes 核心概念
Kubernetes 有各类资源对象来描述整个集群的运行状态(Node、Pod、Replication Controller、Service等都可以看作一种“资源对象”)。这些对象都需要通过调用 kubernetes api 来进行创建、修改、删除并将其保存在etcd中持久化存储,可以通过 kubectl 命令工具,也可以直接调用 k8s api,或者使用对象语言的客户端库(例如:golang , python )。
从这个角度来看,Kubernetes其实是一个高度自动化的资源控制系统,它通过跟踪对比etcd库里保存的“资源期望状态”与当前环境中的“实际资源状态”的差异来实现自动控制和自动纠错的高级功能。
每个 kubernetes 对象都会包含两个关键字段:Object Spec 和 Object Status。spec 描述了对象所期望达到的状态,status 描述了该对象的实际状态。
在介绍资源对象之前,我们先了解一下Kubernetes集群的两种管理角色:Master和Node。
3.1 Master
Kubernetes里的Master指的是集群控制节点,每个Kubernetes集群里需要有一个Master节点来负责整个集群的管理和控制,基本上Kubernetes的所有控制命令都发给它,它来负责具体的执行过程,我们后面执行的所有命令基本都是在Master节点上运行的。Master节点通常会占据一个独立的服务器(高可用部署建议用3台服务器),其主要原因是它太重要了,是整个集群的“首脑”,如果宕机或者不可用,那么对集群内容器应用的管理都将失效。
Master节点上运行着以下一组关键进程:
- Kubernetes API Server (kube-apiserver):提供了HTTP Rest接口的关键服务进程,是Kubernetes里所有资源的增、删、改、查等操作的唯一入口,也是集群控制的入口进程。
- Kubernetes Controller Manager (kube-controller-manager):Kubernetes里所有资源对象的自动化控制中心,可以理解为资源对象的“大总管”。
- Kubernetes Scheduler (kube-scheduler):负责资源调度(Pod调度)的进程,相当于公交公司的“调度室”。
另外,在Master节点上还需要启动一个etcd服务,因为Kubernetes里的所有资源对象的数据全部是保存在etcd中的。
3.2 Node
除了Master,Kubernetes集群中的其他机器被称为Node节点,在较早的版本中也被称为Minion。与Master一样,Node节点可以是一台物理主机,也可以是一台虚拟机。Node节点才是Kubernetes集群中的工作负载节点,每个Node都会被Master分配一些工作负载(Docker容器),当某个Node宕机时,其上的工作负载会被Master自动转移到其他节点上去。
每个Node节点上都运行着以下一组关键进程:
-
<