【数组3】连续子数组的最大和

本文介绍了一种使用动态规划的方法来解决寻找数组中最大子数组和的问题。通过递归方式更新最大和,确保了算法效率,并能妥善处理全部为负数的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:找到数组1 -2 3 10 -4 7 2 -5中的最大和

思路:

(1)如果前面的和为负值,则加上会使得sum<0,因此要从当前开始重新加

(2)动态规划方法--递归

     设sum[i] 为前i个元素中,包含第i个元素且和最大的连续子数组,result 为已找到的子数组中和最大的。对第i+1个元素有两种选择:做为新子数组的第一个元素、放入前面找到的子数组。
sum[i+1] = max(a[i+1], sum[i] + a[i+1])
result = max(result, sum[i])
特殊情况:考虑全是负数的情况
def searchMaxSum(array):
    if len(array)==0:
        return 0
    max=0
    cursum=0
    for i in range(0,len(array)-1):
        if cursum<=0:
            cursum=array[i]
        else:
            cursum=cursum+array[i]
        if cursum>max:
            max=cursum
    return max

if __name__=="__main__":
    array=[1,-2,3,10,-4,7,2,-5]
    print searchMaxSum(array)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值