学校数据结构的课程实验之一。
数据结构:(其实只用了一个二维数组)
算法:深度优先搜索,试探回溯
需求分析:
设计一个在控制台窗口运行的“n皇后问题”解决方案生成器,要求实现以下功能:
由n*n个方块排成n行n列的正方形称为n元棋盘。如果两个皇后位于n元棋盘上的同一行、同一列或同一对角线上,则称它们在互相攻击。现要找出使棋盘上n个皇后互不攻击的布局。
编制程序解决上述问题,以n=6运行程序,输出结果。
算法解释:
首先试探当前行第一个可用的位置(列、对角线没有被占领),摆放皇后之后,试探下一行的第一个可用位置;如果遇到此行没有可用位置,则返回上一行,移除上一行的皇后,试探此行的下一个可用位置,直至n个皇后全部摆放好,生成一种方案。
主函数:
int main()
/*Pre: The user enters a valid board size.
Post: All solutions to the n-queens puzzle for the selected board size
are printed.
Uses: The class Queens and the recursive functionsolve from. */
{
int board_size;
char choice = 'y';
char enter;
while (choice == 'y')//由用户决定是否继续
{
sum = 0;
cout << "What is the size of the board?"<<flush;
cin >> board_size;
if(board_size < 0||board_size > max_board)
cout<<"The number must between 0 and "<<max_board<<endl;
else
{
Queens configuration(board_size);//创建size*size的对象
cout << "there is total " << solve_from(configuration) << " configurations." << endl;//打印所有解决方案和方案个数
}
cout << endl << "Would you like to continue? [y/n]" << endl;
//回车符的消去
fflush(stdin);
while ((enter = cin.get()) == '\n')
{
enter = cin.get();
}
cin.putback(enter);
cin >> choice;//移植了计算器的代码
}
return 0;
}
辅助函数(计算出所有解决方案)(参考了经典教材”Data Structures and Program Design in C++” Robert L. Kruse, Alexander J. Ryba 高等教育出版社-影印版)
int sum = 0;//记录解决方案个数
int solve_from(Queens &configuration)//通过递归、回溯找到所有解决方案并打印
/*Pre: the queens configuration represents a partially completed
arrangement of nonattacking queens on a chessboard.
Post: all n-queens solutions that extend the given configuration are
printed. The configuration is restored to its initial state.
Uses: the class Queens and the function solve_from, recursively.*/
{
if (configuration.is_solved())//当生成一种解决方案时打印,sum自增一
{
sum++;
configuration.print();
cout <<"================" <<endl;
}
else
for(int col=0; col<configuration.board_size; col++)
if(configuration.unguarded(col))
{
configuration.insert(col);
solve_from(configuration);//recursively continue to add queens当生成一种解决方案时打印
configuration.remove(col);//return the last row and the last col.试探上一层的下一种方案(无论上一次试探是成功还是失败)
}
return sum;
}
注:
每次回溯其实有两种可能:“摆放满了n个皇后”或者“此行没有可放的位置”,二者都会返回上一行去试探下一种可能,只不过摆满n个皇后的情况会生成一种方案(被if截获,回到上一层循环),生成后还是回到倒数第二行再进行试探。因此一次深度优先搜索(调用一次solve_from函数)可以将所有方案全部输出。
“皇后”类的定义
const int max_board = 15;//最大棋盘阶数
using namespace std;
class Queens
{
public:
Queens(int size);
bool is_solved() const;//判断是否完成一种方案
void print() const;//打印当前方案
bool unguarded(int col) const;//判断某格是否可放皇后
void insert(int col);//摆放皇后
void remove(int col);//移除
int board_size;//dimension of board = maximum number of queens
private:
int count;//current number of queens = first unoccupied row
bool queen_square[max_board][max_board];//存放棋盘状态的二维数组
};
运行截图
注:
当输入的棋盘阶数比较大(如:8)时,命令行窗口的缓冲区默认300行可能会不够显示,所以要在属性修改“高度”,使所有结果都显示出来。