LangChain开发获取天气的Agent教程

LangChain开发获取天气的Agent教程


1) 项目结构

weather-agent/
├─ app/
│  ├─ core/
│  │  ├─ config.py             # 配置与环境变量
│  │  ├─ logging.py            # 结构化日志
│  │  └─ observability.py      # Prometheus/OTEL/ LangSmith
│  ├─ llm/
│  │  ├─ model.py              # LLM 客户端与 LangChain 初始化
│  │  └─ agent.py              # Agent / Tool / Prompt
│  ├─ tools/
│  │  └─ weather.py            # 天气工具(API 封装、重试、超时、缓存)
│  ├─ api/
│  │  ├─ schemas.py            # Pydantic 请求/响应模型
│  │  └─ routes.py             # FastAPI 路由(/v1/weather, /healthz, /metrics)
│  ├─ main.py                  # FastAPI 入口
│  └─ __init__.py
├─ tests/
│  ├─ test_weather_tool.py
│  └─ test_api.py
├─ requirements.txt
├─ Dockerfile
├─ docker-compose.yaml
├─ k8s/
│  
<think>嗯,用户想在Langchain-Chatchat的0.3.0版本中自定义Agent,需要示例和方法。首先,我需要回忆一下Langchain-Chatchat的文档结构,尤其是关于Agent的部分。根据提供的引用内容,引用[2]提到了L3.1 Agent模型框架,这可能与自定义Agent相关。用户需要具体的步骤,所以应该分步骤说明。 首先,安装库。根据引用[1],用户需要安装特定版本,可能需要使用pip install命令。然后,可能需要导入相关模块,比如AgentExecutor或BaseTool。接下来,创建工具类,这部分可能需要继承BaseTool,并实现必要的接口,比如_run方法。然后,注册工具到Agent,可能需要使用装饰器或者配置文件。接着,初始化Agent并运行,可能需要加载模型,设置参数等。示例代码应该用Python展示,并且符合用户的代码格式要求。 另外,用户可能需要了解如何扩展工具和调整策略,比如添加新工具或者修改提示模板。需要注意用户提到的版本是0.3.0,所以需要确保提供的方法适用于该版本。同时,需要检查是否有相关引用支持,比如引用[3]提到本地部署可能需要模型路径,但用户的问题更多是关于自定义Agent,所以可能引用[2]和[1]更相关。 最后,生成相关问题时要围绕自定义Agent的深入问题,比如性能优化、工具扩展、模型集成等。需要确保回答结构清晰,步骤正确,并且代码示例无误。需要确认所有LaTeX格式是否正确,比如行内公式用$...$,独立公式用$$...$$,但在这个问题中可能数学公式较少,但还是要检查是否有需要的地方。使用中文回答,保持自然流畅。</think>以下是在LangChain-Chatchat 0.3.0版本中自定义Agent的详细步骤及示例: ### 一、环境准备 1. 安装指定版本库(基于引用[1]): ```bash pip install langchain-chatchat==0.3.0 -U ``` ### 二、自定义Agent开发流程 #### 步骤1:创建工具类 ```python from langchain.tools import BaseTool class CustomCalculator(BaseTool): name = "数学计算器" description = "执行基础算术运算" def _run(self, expression: str) -> str: try: return str(eval(expression)) except Exception as e: return f"计算错误:{e}" ``` #### 步骤2:注册Agent工具 ```python from langchain.agents import tool @tool def weather_query(city: str) -> str: """获取指定城市的天气信息""" # 实现API调用逻辑 return f"{city}:晴,25℃" ``` #### 步骤3:构建Agent执行器(基于引用[2]的L3.1框架) ```python from langchain.agents import AgentExecutor from langchain.chat_models import ChatOpenAI def create_agent(): tools = [CustomCalculator(), weather_query] llm = ChatOpenAI(temperature=0) return AgentExecutor.from_agent_and_tools( agent="zero-shot-react-description", tools=tools, llm=llm, verbose=True ) ``` ### 三、运行示例 ```python agent = create_agent() result = agent.run("北京气温是多少?计算(3^2 + 4)*5的值") print(result) ``` ### 四、扩展方法(基于引用[3]的部署经验) 1. **工具扩展**:继承`BaseTool`类可添加任意功能模块 2. **策略调整**:通过修改`prompt_template`实现交互逻辑定制 3. **模型集成**:可替换LLM为ChatGLM等本地模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大势下的牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值