Elasticsearch AI 语义搜索(semantic_text)

一、语义搜索

在传统的搜索系统中,Elasticsearch 一直依赖 倒排索引(inverted index)+ BM25 算法,这种方式非常适合关键词匹配,但存在明显的局限性:

  • 同义词问题:用户输入“手机”,但文档中写的是“智能电话”,传统搜索可能匹配不到。
  • 语义理解问题:用户输入“谁写了红楼梦?”,关键词搜索会检索“谁”、“写”、“红楼梦”,但很难直接理解用户意图。
  • 上下文问题:传统搜索不理解句子整体含义,例如“最好的编程语言是什么”,它只会匹配“最好”和“编程语言”,而不是理解这个问题是在寻找“排名”或“推荐”。

为了解决这些问题,Elasticsearch 从 8.0 版本开始,逐渐引入了 dense_vector 向量字段knn search、以及 semantic_text 查询,结合大语言模型(LLM)和向量搜索(vector search),构建出真正的 语义搜索(semantic search) 能力。


二、Elasticsearch 语义搜索核心原理

语义搜索的关键是 Embedding 向量化

  1. Emb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大势下的牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值