从0到1打造企业AI知识库:实用指南与生产落地
文章平均质量分 89
在数字化时代,企业知识管理已成为提升效率与竞争力的关键环节。本课程将从0到1,系统讲解如何利用AI技术打造企业级知识库,涵盖基础概念、技术选型、落地实践和生产部署等核心环节。课程聚焦实用性与可落地性,结合大模型、知识检索(RAG)、LangChain 等前沿技术,帮助学员快速掌
大势下的牛马
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
从0到1打造企业AI知识库-课程目录
课程名称:「从0到1打造企业AI知识库:实用指南与生产落地」原创 2025-01-22 11:05:36 · 1220 阅读 · 0 评论
-
扩展:AI agent在vibe coding中的功能、能力与应用场景
AI编程助手与Vibe Coding技术发展摘要(2025) 核心进展 AI Agent在Vibe Coding中实现自然语言到完整应用的端到端生成,主要功能包括: 代码生成与重构(全栈开发) 环境自动配置 多代理协作开发 自动化测试与错误修复 上下文集成验证 UI/工作流生成 关键能力 自主构建完整应用(3-5倍效率提升) 多代理并行处理 持久化上下文管理 规则/安全标准执行 迭代式故障处理 低成本开发(约$10/小时) 应用生态 开源工具:MetaGPT、AgentGPT等支持全栈生成,需技术部署 商业原创 2025-12-31 16:57:19 · 36 阅读 · 0 评论 -
智能客服多智能体(知识库问答+情绪感知+工单路由)
本文提出了一种基于多智能体协作的智能客服系统架构,旨在通过模块化设计实现高准确率问答、情绪识别和工单自动路由。系统采用分层架构,包括统一接入层、NLU路由层、知识检索层、回答生成层、情绪分析层、工单路由层等核心模块。关键技术包括RAG检索增强生成、LangGraph状态管理、混合规则+ML的工单路由等。系统强调可观测性、安全合规性,支持多渠道接入,并通过职责分离降低回复错误率。文中提供了Python实现示例,包含FAISS向量检索、Pydantic状态管理等具体代码片段,为企业级客服平台提供了一套完整的自动原创 2025-08-28 15:39:59 · 312 阅读 · 0 评论 -
基于LangGraph的多智能体Demo
本文介绍了使用LangGraph框架构建双Agent协作系统的实践方案。该系统由Researcher和Writer两个Agent组成,分别负责信息检索与内容创作,通过分工协作完成短视频脚本生成任务。文章详细说明了环境配置、核心概念(StateGraph、Node、Edge等)以及完整代码实现,演示了Agent间动态交互(handoff机制)的工作流程。这种架构设计既能提高任务可靠性,又便于独立优化各模块性能,适用于企业级内容生成场景。原创 2025-08-28 15:33:32 · 422 阅读 · 0 评论 -
在生产环境中使用 LangGraph 开发多智能体系统
本文介绍了基于LangGraph框架构建航空公司客户支持自动化多智能体系统的完整方案。系统通过多个智能体协作处理三类典型查询:航班状态查询、航班改签和退款申请。文章详细阐述了系统架构设计,包括状态定义、智能体分工(意图识别、航班查询、预订更新等)以及工具集成方法。教程内容涵盖环境配置、状态管理、工具开发、智能体实现等核心环节,并提供了模拟API代码示例。该系统支持状态持久化、人工干预和错误恢复,适用于企业级生产环境部署,为开发复杂AI协作系统提供了实用参考。原创 2025-08-28 15:26:10 · 123 阅读 · 0 评论 -
企业落地版 AutoGen 工程示例:自动化市场分析报告生成系统
企业级AutoGen市场分析系统示例:该方案构建了一个多智能体协作系统,用于自动化生成科技公司的竞争对手市场分析报告。系统包含研究、分析和报告三大智能体,支持网页数据抓取、实时分析、可视化图表生成和结构化报告输出。采用Python 3.10+开发,基于OpenAI GPT-4模型,具有企业级特性如Docker部署、环境变量配置、日志记录和错误处理。项目结构清晰,包含智能体定义、工具集成和工作流管理模块,支持人类审核反馈循环,可扩展集成数据库和云服务,总代码量适中便于维护。原创 2025-08-27 17:17:36 · 604 阅读 · 0 评论 -
企业落地版 AutoGen 多智能体工程(完整示例)
企业级AutoGen生产模板摘要 本项目提供一套开箱即用的企业生产模板,集成FastAPI、Celery、PostgreSQL/pgvector、SQLAlchemy等核心组件,支持多智能体编排(AutoGen)与安全代码执行。 核心功能 安全隔离:用户代码在受限容器中执行,资源可控 异步任务:Celery处理长任务,支持重试与优先级队列 RAG支持:PostgreSQL+pgvector实现向量存储与检索 多模型路由:可配置不同LLM(如Qwen/OpenAI)并记录成本 审计追踪:全流程日志持久化,便于原创 2025-08-27 17:14:29 · 273 阅读 · 0 评论 -
AutoGen 智能体框架教程
AutoGen是微软开源的多智能体协作框架,通过分工协作的智能体(Agent)快速构建复杂AI应用。核心功能包括智能体对话、工具调用、代码执行和记忆机制,适用于编程助手、数据分析、任务自动化等场景。智能体可配置不同角色(如开发者、执行者)、LLM模型和工具(Python执行器、API调用等)。通过多智能体协作,可自动完成代码生成、数据分析和可视化等任务。安装简单,支持多种AI模型,并提供基础对话、多角色协作和API集成等示例,能显著提升AI应用的开发效率。原创 2025-08-27 17:08:11 · 181 阅读 · 0 评论 -
Milvus + Reranker 混合搜索技术方案详细文档
本文介绍了基于Milvus向量数据库的混合搜索技术方案,结合稀疏检索(BM25)和稠密检索(向量相似度),通过Reranker模型二次排序提升RAG系统的检索质量。方案采用并行检索架构,包含BM25检索和向量检索,通过RRF融合算法和重排序模型优化结果。技术栈包括Milvus 2.3+、Elasticsearch 8.x、BAAI/bge-m3嵌入模型和BAAI/bge-reranker-large重排序模型。文档预处理采用中文文本切分策略,按语义边界切分并添加重叠内容。向量化入库部分使用PyMilvus实原创 2025-08-27 10:23:04 · 207 阅读 · 0 评论 -
LangChain开发获取天气的Agent教程
本文介绍了一个基于LangChain开发的天气查询Agent项目。项目采用模块化设计,包含核心配置、日志系统、可观测性模块、LLM接口、天气工具和API路由等功能。部署环境需要Python 3.10+,支持Redis缓存和Prometheus监控等可选组件。核心代码展示了配置管理、结构化日志、可观测性集成和天气查询工具的实现,其中天气工具采用httpx进行网络请求,并实现重试机制和Redis缓存功能。项目提供完整的Docker和Kubernetes部署方案,适合构建生产级AI应用。原创 2025-08-21 15:29:57 · 273 阅读 · 0 评论 -
构建你的第一个MCP服务器:一步步实现简单MCP服务器
本文介绍了如何构建一个基于模型上下文协议(MCP)的文件系统服务器,实现AI与外部数据源的集成。主要内容包括: MCP协议概述:类似HTTP的统一接口,支持通过JSON-RPC 2.0实现AI与外部资源的交互 开发环境配置:Python 3.10+环境搭建,使用uv包管理工具 服务器实现:基于FastMCP框架开发,包含列出目录文件和读取文件内容两个核心功能 运行与测试:通过stdio传输方式启动服务器,并与Claude Desktop等MCP主机集成测试 扩展建议:包括权限控制、日志记录和功能扩展方向 该原创 2025-07-24 20:46:45 · 246 阅读 · 0 评论 -
员工使用大模型时:AI网关敏感信息监测与遮挡(APISIX)
摘要: 本文提出基于Apache APISIX网关的敏感信息监测与遮挡方案,用于保护员工调用大模型时传输的数据隐私。针对JSON、纯文本等混合格式请求,方案结合Lua插件实现:1)通过JSON解析递归处理结构化数据中的敏感字段;2)利用正则表达式匹配非结构化内容中的邮箱、手机号等敏感信息;3)将被识别信息替换为占位符并记录脱敏事件。该方案支持动态配置敏感字段规则,在保证高性能的同时满足合规要求,适用于不固定格式的数据处理场景。(149字)原创 2025-07-16 11:10:56 · 151 阅读 · 0 评论 -
MCP 协议简介
MCP协议简介及核心组件 MCP(Model Context Protocol)是由Anthropic于2024年11月推出的开放标准协议,旨在简化AI模型与外部数据源、工具的集成。该协议包含四个核心组件: MCP Host:使用AI的主要应用程序(如IDE或聊天机器人),负责发起数据请求。 MCP Client:处理Host与Server间的通信,确保标准化交互。 MCP Server:提供对特定数据源或工具(如数据库、API)的访问。 MCP Registry:服务发现组件,帮助Host查找可用Serv原创 2025-07-11 10:01:21 · 116 阅读 · 0 评论 -
企业中使用 MCP Server 实现业务打通
通过使用 MCP Server,企业可以实现业务流程的自动化和智能化。MCP 协议通过标准化上下文管理、客户端-服务器架构、工具与资源的集成、动态上下文优化以及安全可扩展性,为 LLM 与外部系统的交互提供了高效、灵活的解决方案。企业可以根据自身的业务需求,封装多个工具并利用 MCP Server 进行业务打通,提升整体运营效率和智能化水平。原创 2025-06-10 20:57:58 · 394 阅读 · 0 评论 -
企业中如何使用大模型中的 Function Call 实现业务打通
Function Call 允许大语言模型与外部系统或API交互,动态调用预定义的函数完成特定任务。这种机制将大模型的自然语言理解能力与企业的内部系统或业务逻辑结合,实现自动化流程处理。原创 2025-06-10 20:45:39 · 116 阅读 · 0 评论 -
大模型中Function Call的定义与核心功能
Function Call 是一种机制,允许大语言模型在生成文本时调用外部工具或 API,以执行超出其原生能力的任务。通过这种方式,模型可以整合实时数据、动态计算或特定领域的专业功能,从而增强输出的准确性和实用性。原创 2025-06-10 20:39:45 · 258 阅读 · 0 评论 -
本地部署多智能体Manus
Manus作为通用型AI Agent备受关注,现已支持本地部署多智能体协作平台,提供更高自主性和安全性。部署优势包括:保障数据隐私、灵活定制业务场景、降低长期成本及提升本地响应速度。提供三种部署方式:1)传统conda环境部署;2)uv方案快速安装;3)Docker容器化部署。其中docker-compose方案整合前端、后端、沙箱及数据库服务,通过环境变量配置API密钥等参数,实现一站式AI协作平台搭建。部署过程包含环境准备、依赖安装、配置文件设置等标准化步骤,满足不同技术栈需求。原创 2025-06-10 11:29:43 · 250 阅读 · 0 评论 -
第23章:多智能体系统(MAS)的部署、监控与运维
本章将深入讲解多智能体系统(MAS)在企业级生产环境中的部署、监控与运维。内容涵盖分布式部署策略、可观测性设计、分布式调试、性能优化、容错与高可用、以及安全保障等关键环节。通过实际项目案例和代码示例,帮助你掌握 MAS 在生产环境中的落地方法。原创 2025-04-28 08:46:06 · 512 阅读 · 0 评论 -
第22章:主流多智能体 (MAS)开发框架与工具
Java最著名和广泛使用的传统 MAS 框架之一。严格遵循 FIPA 标准(ACL、交互协议、Agent 管理服务 AMS、目录服务 DF)。提供图形化工具用于调试和管理。历史悠久,社区庞大,但相对较重。需要严格 FIPA 合规性、基于 Java 的大型、分布式 Agent 系统。Python基于 XMPP (Jabber) 协议进行通信,利用了 XMPP 的路由、在线状态、安全等特性。也支持 FIPA ACL。相对 JADE 更轻量级,利用 Python 的优势。原创 2025-04-28 08:45:25 · 231 阅读 · 0 评论 -
第21章:多智能体系统 (MAS)中的协调与协作机制
协调与协作是发挥 MAS 潜力的关键。任务分配策略(市场、集中、分布式)决定了如何将工作分配给 Agent。资源共享与冲突解决机制(锁、优先级、协商等)管理对有限资源的访问。团队形成与动态重组使得 Agent 能够根据任务需求灵活地组合与调整。组织结构设计与角色动态分配提供了 Agent 间交互的框架,并允许根据情况调整职责。涌现行为是 MAS 的一个重要特性,理解和管理它对于确保系统按预期运行至关重要。掌握这些机制的设计和应用,是构建能够应对复杂、动态环境的智能、自适应多智能体系统的基础。原创 2025-04-28 08:43:53 · 260 阅读 · 0 评论 -
第20章:Agent间通信与交互协议
有效的通信是多智能体系统协同工作的基石。通信语言 (ACL)定义消息意图,内容语言和本体论定义消息内容的语法和语义,确保互操作性。消息传递机制(点对点、广播、订阅/发布)决定消息如何分发,企业级系统常依赖消息中间件。交互协议(如合同网、拍卖、协商)为实现特定目标(任务分配、资源分配、达成共识)提供了结构化的对话流程。间接交互通过共享知识库或环境进行,是直接通信的重要补充。理解并恰当设计这些通信机制和协议,对于构建健壮、高效、可扩展的多智能体系统至关重要。原创 2025-04-28 08:42:42 · 165 阅读 · 0 评论 -
第19章:Multi-Agent多智能体系统介绍
多智能体系统 (MAS) 是由多个自主的、交互的智能体组成的计算系统。这些智能体在一个共享的环境中运作,它们拥有各自的目标、知识和能力,并通过相互通信与协作(或竞争)来解决单个智能体难以或无法完成的复杂问题。特性单 Agent 系统多智能体系统 (MAS)组成通常只有一个核心智能体包含两个或多个交互的智能体交互主要与环境或其他非智能体实体交互智能体之间存在复杂的交互(通信、协调)目标追求自身目标可能有共享的全局目标,也可能有冲突的个体目标知识拥有自身的知识库。原创 2025-04-25 17:18:46 · 364 阅读 · 0 评论 -
第18章:MCP在创作领域中的应用
MCP 框架为 AI Agent 深入参与创意领域提供了强大的支撑。通过整合记忆管理、上下文理解和规划能力,AI Agent 可以超越简单的内容生成,成为创作者在灵感激发、素材管理、内容创作、流程规划等方面的得力助手。这种人机协作的模式有望极大地提升创意工作的效率和质量,并可能催生出全新的创意形式。未来的挑战在于如何更好地理解和模拟创意过程中的直觉、情感和审美判断,以及如何设计更自然、更富有启发性的人机交互方式。原创 2025-04-25 17:17:33 · 199 阅读 · 0 评论 -
第17章:MCP框架构建知识工作助手
MCP 框架为构建强大的知识工作助手提供了坚实的基础。通过整合记忆、上下文理解和规划能力,AI Agent 不再仅仅是信息的搬运工,更能成为知识工作者在信息获取、组织、分析、创造过程中的智能伙伴。实现这些高级功能需要克服数据获取、知识表示、LLM 能力整合等多方面的挑战,但其带来的效率提升和洞察发现潜力巨大,是 AI Agent 未来发展的重要方向。原创 2025-04-24 19:42:48 · 246 阅读 · 0 评论 -
第16章:MCP服务端项目开发实战:对话系统
将 MCP 框架应用于对话系统,可以显著提升其智能水平和用户体验。通过有效的记忆管理,Agent 能够维持长对话的连贯性;通过利用用户记忆,可以实现个性化的交互;通过对话驱动的知识追踪与学习,Agent 能够不断进化。规划能力则使得 Agent 能够更结构化地处理复杂的用户请求。虽然实现一个完整的 MCP 对话系统涉及诸多挑战,但其带来的价值使得它成为未来智能对话交互的重要发展方向。原创 2025-04-24 19:41:06 · 168 阅读 · 0 评论 -
第15章:MCP服务端项目开发实战:性能优化
性能优化和扩展是构建生产级 MCP 系统的关键环节。通过识别系统瓶颈,应用缓存策略、优化并发处理、采用分布式架构和水平扩展方案,可以显著提升 MCP Agent 的响应速度、吞吐量和可用性。在实践中,需要根据具体的应用场景、负载情况和成本预算,选择合适的优化技术和架构方案,并持续进行性能监控和调优。原创 2025-04-24 19:40:24 · 396 阅读 · 0 评论 -
第14章:MCP服务端项目开发实战:多模态信息处理
多模态信息处理是 AI Agent 向更高级智能迈进的关键一步。通过引入多模态嵌入技术,MCP 框架可以在 Context、Memory 和 Planning 各个层面进行扩展,以实现对文本、图像、音频等多种信息的统一理解、融合、存储、检索和规划。利用强大的预训练多模态模型(如 CLIP, GPT-4V 等)是实现这些能力的核心。设计能够处理多模态数据流、调用多模态工具并与 MLLM 有效协作的 Context 和 Planning 组件,将是未来构建高级 AI Agent 的重要方向。原创 2025-04-24 19:39:10 · 153 阅读 · 0 评论 -
第13章:MCP服务端项目开发实战:向量检索
Faiss (Facebook AI Similarity Search) 是一个非常流行的高效向量检索库,提供了多种 ANN 算法的实现。核心概念Index对象代表一个索引。常用索引类型: 精确搜索(暴力计算),用于基准测试或小数据集。L2 是欧氏距离,IP 是内积。: 基于倒排文件的精确搜索(先聚类缩小范围)。IndexLSH: 基于 LSH。: 基于 HNSW。IndexIVFPQ: 基于倒排文件 + 乘积量化。: 标量量化。基本流程创建索引,指定维度和算法参数。训练索引 (可选)原创 2025-04-24 19:38:12 · 276 阅读 · 0 评论 -
第12章:MCP服务端项目开发实战:数据持久化
数据持久化与管理是 MCP 服务端不可或缺的一部分。选择合适的存储方案(向量库、SQL/NoSQL、缓存、对象存储)来满足不同数据的需求(性能、结构、查询方式)是基础。同时,高效管理用户画像和会使系统能够提供个性化和连续性的服务。最为重要的是,必须将数据安全和隐私保护贯穿于设计的始终,采取强有力的技术和管理措施,遵守法规要求,赢得用户的信任。下一章,我们将探讨向量检索和相似度计算的更高级主题。原创 2025-04-23 14:10:41 · 367 阅读 · 0 评论 -
第11章:MCP服务端项目开发实战:核心服务实现
添加记忆项。: 搜索相关记忆。: 获取特定记忆。: 删除记忆。(可能): 获取指定会话的工作记忆。(可能): 添加到指定会话的工作记忆。: 构建上下文 Prompt。: 分解任务。: 执行计划(或下一步)。(可能): 获取计划状态。原创 2025-04-23 14:09:49 · 304 阅读 · 0 评论 -
第10章:MCP 服务端架构设计
清晰、一致、易用的 API 是系统集成和客户端开发的关键。设计一个健壮的 MCP 服务端系统需要综合考虑架构模式(单体 vs. 微服务)、API 风格、数据流、状态管理以及长期的扩展性和可维护性。采用分层、模块化的设计,选择合适的通信机制和数据存储方案,并建立完善的监控、测试和部署流程,是构建成功的 MCP 服务端的关键。没有完美的架构,只有适合当前业务需求和团队能力的架构。在实践中,架构往往是逐步演进的。下一章,我们将更具体地探讨核心服务的实现细节。原创 2025-04-22 14:35:54 · 845 阅读 · 0 评论 -
第9章:MCP框架中Planning组件设计
Planning 组件是实现 Agent 自主性和目标导向能力的核心。通过结合结构化的规划方法(如 HTN)和 LLM 的灵活性,Agent 可以有效地分解复杂任务、生成执行计划。健壮的执行器负责按计划调用工具和模型,并通过监控机制发现问题。动态的计划调整和优化能力使得 Agent 能够适应变化的环境,从失败中学习,最终更可靠地完成用户目标。设计和实现一个强大的 Planning 系统是构建高级 AI Agent 的关键挑战之一。接下来的章节将探讨如何将这些 MCP 组件整合到服务端架构中。原创 2025-04-22 14:33:42 · 151 阅读 · 0 评论 -
第8章:MCP框架中Context 组件上下文处理
Context 组件是 MCP 框架的中枢神经系统,负责信息的汇聚、筛选、组织和呈现。通过有效的上下文表示、智能的窗口管理、精准的相关性计算以及灵活的压缩与扩展技术,Context 组件能够为 LLM 提供高质量的输入,最大限度地发挥其能力,同时克服其固有的上下文限制。设计良好的 Context 组件是构建高效、可靠、能够处理复杂任务的 AI Agent 的关键。下一章我们将探讨 Planning 组件,了解 Agent 如何进行任务规划和执行。原创 2025-04-22 14:33:03 · 183 阅读 · 0 评论 -
第7章:记忆系统设计与实现
本章深入探讨了 MCP 框架中 Memory 组件的设计与实现,涵盖了短期记忆和长期记忆的管理。使用deque高效管理容量有限、快速访问的短期/工作记忆。长期记忆的核心挑战是基于内容的检索,向量数据库是实现这一目标的关键技术。以FAISS和ChromaDB为例,展示了如何利用向量数据库进行记忆的存储、相似度搜索和元数据过滤。模拟人类记忆的动态性,引入了基于访问频率、重要性和时间的强化与衰减机制,以及遗忘策略,以保持记忆系统的相关性和效率。选择和集成向量数据库。原创 2025-04-22 14:31:11 · 136 阅读 · 0 评论 -
第6章:MCP 的理论基础
MCP 框架的设计融合了认知科学的记忆模型、计算语言学的上下文处理技术以及人工智能的规划理论。通过 Memory 组件模拟人类记忆系统,Context 组件优化信息处理和上下文利用,Planning 组件实现复杂任务的分解和执行,MCP 旨在构建一个更强大、更可靠、更接近人类认知能力的 AI Agent。理解这些理论基础有助于我们更好地设计、实现和优化 MCP 系统。原创 2025-04-22 14:30:11 · 154 阅读 · 0 评论 -
第5章:MCP框架详解
MCP框架是一个专门设计用于增强大语言模型认知能力的系统架构,旨在解决LLM在实际应用中面临的关键挑战。该框架由三个核心组件组成:Memory(记忆)、Context(上下文)和Planning(规划)。原创 2025-04-21 16:25:57 · 381 阅读 · 0 评论 -
第4章:AI Agent认知增强的必要性
在前三章中,我们介绍了AI Agent的基本概念、架构和常见框架。本章将深入探讨为什么需要对AI Agent进行认知增强,特别是针对基于大语言模型(LLM)的Agent系统。我们将分析当前LLM的能力边界和局限性,并为后续章节中介绍的MCP框架奠定理论基础。原创 2025-04-21 16:24:59 · 116 阅读 · 0 评论 -
第3章:常见的 AI Agent 框架
随着AI技术的发展,涌现出了许多优秀的开源Agent框架,为开发者提供了便捷的工具和平台。本章我们详细介绍了三种主要类型的AI Agent框架:基于规则的Agent、基于学习的Agent和混合型Agent,并探讨了它们各自的原理、优缺点和适用场景。此外,我们还介绍了几个流行的开源Agent框架,包括LangChain、Rasa、AutoGPT、BabyAGI和LlamaIndex,这些框架为开发者提供了构建各种智能Agent的工具和平台。原创 2025-04-21 16:23:41 · 120 阅读 · 0 评论 -
第2章:AI Agent 的基本架构
从计算机科学和人工智能的角度来看,AI Agent可以被定义为:一个AI Agent是一个计算系统,它存在于某个环境中,能够自主感知环境,并根据这些感知做出决策和采取行动,以实现其设计目标。环境交互:Agent不是孤立存在的,而是与环境有持续的交互目标导向:Agent的行为是为了实现特定的目标或目的自主决策:Agent能够独立做出决策,而不仅仅是执行预定义的指令AI Agent是一种能够感知环境、做出决策并采取行动的智能系统,具有自主性、感知能力、决策能力和执行能力等特性。原创 2025-04-21 13:58:40 · 246 阅读 · 0 评论 -
第1章:AI Agent 概述
从计算机科学和人工智能的角度来看,AI Agent可以被定义为:一个AI Agent是一个计算系统,它存在于某个环境中,能够自主感知环境,并根据这些感知做出决策和采取行动,以实现其设计目标。环境交互:Agent不是孤立存在的,而是与环境有持续的交互目标导向:Agent的行为是为了实现特定的目标或目的自主决策:Agent能够独立做出决策,而不仅仅是执行预定义的指令AI Agent是一种能够感知环境、做出决策并采取行动的智能系统,具有自主性、感知能力、决策能力和执行能力等特性。原创 2025-04-21 13:57:52 · 164 阅读 · 0 评论
分享