在人工智能加速落地的今天,一个长期存在的难题依然困扰着开发者与行业用户:如何从非结构化文本中,高效、准确地提取结构化信息,并确保结果可追溯、可验证?
尤其是在医疗、金融、法律等高敏感领域,提取结果不仅要“对”,还要“有据可查”——即知道每一条信息来自原文的哪一句话、哪一个段落。
现在,谷歌给出了一个优雅的解决方案:LangExtract —— 一款专为高精度、可溯源、交互式结构化信息提取而设计的开源工具。
什么是 LangExtract?
LangExtract 并不是一个大模型,也不是一个需要微调的深度学习系统。它是一个轻量级、基于提示工程(prompting)与检索增强的结构化提取框架,其核心目标是:
从长文档中提取结构化数据,并精确标注信息来源,最终生成可交互的可视化报告。
它不需要你训练模型、部署 GPU 集群,只需提供少量示例,即可快速应用于各类文本提取任务。
核心能力:精准、溯源、可视化
✅ 精确来源定位:高亮标注,一目了然
LangExtract 最大的亮点是可溯源性(