学习率调度器工具函数-get_scheduler
get_scheduler 是 Hugging Face Transformers 深度学习框架中用于创建学习率调度器(Learning Rate Scheduler)的工具函数。它的核心作用是动态调整训练过程中的学习率,以优化模型收敛速度、稳定性和最终性能
一、get_scheduler的主要用途
1.1. 支持多种学习率调整策略
- 通过指定 name 参数,可以灵活选择不同的学习率调度策略,例如:
- linear:线性衰减学习率。
- cosine:余弦退火(学习率周期性波动)。
- cosine_with_restarts:带重启的余弦退火。
- reduce_lr_on_plateau:当验证指标停滞时自动降低学习率。
- constant:固定学习率
- polynomial:多项式衰减
1.2. 动态适应训练阶段
- 学习率在训练的不同阶段自动调整,例如:
- 训练初期:使用较大的学习率加速收敛。
- 训练后期:逐步降低学习率,精细调整模型参数。
- 验证指标停滞时:通过 reduce_lr_on_plateau 自动调整,避免陷入局部最优
1.3. 与优化器(Optimizer)解耦
- 将学习率策略与优化器(如 AdamW、SGD)解耦,无需修改优化器代码即可灵活切换调度策略
1.4. 简化代码实现
- 避免手动编写复杂的调度逻辑,通过统一接口快速实现学习率策略
二、典型应用场景
2.1. 微调预训练模型(Fine-tuning)
-
使用 cosine 或 linear 策略,逐步降低初始大学习率,防止破坏预训练权重
-
示例:
from transformers import get_scheduler
scheduler = get_scheduler(
name="linear",
optimizer