【LLMs篇】19:vLLM推理中的KV Cache技术全解析

在这里插入图片描述

前言

在大语言模型(LLM)推理优化的世界里,KV Cache技术就像是一把神奇的钥匙,能够显著提升推理速度和降低计算成本。本文将带您深入了解vLLM中KV Cache的工作原理、实现细节和优化策略,无论您是刚接触这个领域的新手,还是寻求深度技术洞察的专业人员。

第一章:基础概念篇 - 什么是KV Cache?

1.1 从Transformer说起

想象一下,您正在和朋友聊天。当朋友问"你昨天去哪里了?"时,您的大脑不仅要理解这个问题,还要回忆起昨天的经历来组织回答。大语言模型的工作方式与此类似,但它需要"记住"对话中的每一个词token。

在Transformer架构中,这种"记忆"机制主要通过自注意力机制(Self-Attention)实现:

Attention(Q, K, V) = softmax(QK^T/√d_k)V

其中:

  • Q (Query):当前要处理的token的查询向量
  • K (Key):所有历史token的键向量
  • V (Value):所有历史token的值向量

1.2 KV Cache的核心思想

问题的提出:在生成每个新token时,模型需要重新计算所有历史token的Key和Value向量,这造成了大量重复计算。

KV Cache的解决方案:既然历史token的K和V向量在生成过程中不会改变,为什么不把它们缓存起来呢?

# 传统方式(每次都重新计算)
for step in range(sequence_length):
    K = compute_keys(all_tokens[:step+1])    # 重复计算
    V = compute_values(all_tokens[:step+1])  # 重复计算
    output = attention(Q, K, V)

# KV Cache方式(增量计算)
K_cache, V_cache = [], []
for step in range(sequence_length):
    new_k = compute_key(current_token)
    new_v = compute_value(current_token)
    K_cache.append(new_k)  # 只计算新的K
    V_cache.append(new_v)  # 只计算新的V
    output = attention(Q, K_cache, V_cache)

1.3 性能提升的量化分析

使用KV Cache后的性能提升可以用以下公式估算:

加速比 = O(n²) / O(n) = n

其中n是序列长度

实际测试数据显示:

  • 延迟降低:70-90%的推理延迟减少
  • 吞吐量提升:2-5倍的token生成速度提升
  • 内存trade-off:以增加内存使用换取计算加速

第二章:vLLM中的KV Cache实现

2.1 vLLM架构概览

vLLM是一个高性能的LLM推理引擎,其KV Cache实现具有以下特点:

class vLLMKVCache:
    def __init__(self, max_seq_len, num_heads, head_dim, dtype):
        self.max_seq_len = max_seq_len
        self.num_heads = num_heads
        self.head_dim = head_dim
        
        # 预分配内存块
        self.key_cache = torch.zeros(
            (max_seq_len, num_heads, head_dim), 
            dtype=dtype, device='cuda'
        )
        self.value_cache = torch.zeros(
            (max_seq_len, num_heads, head_dim), 
            dtype=dtype, device='cuda'
        )
        
        self.current_length = 0

2.2 PagedAttention:革命性的内存管理

vLLM的核心创新是PagedAttention技术,将KV Cache组织成固定大小的"页面":

class PagedKVCache:
    def __init__(self, page_size=16, max_pages=1000):
        self.page_size = page_size  # 每页包含16个token
        self.max_pages = max_pages
        
        # 物理页面池
        self.key_pages = torch.zeros(
            (max_pages, page_size, num_heads, head_dim)
        )
        self.value_pages = torch.zeros(
            (max_pages, page_size, num_heads, head_dim)
        )
        
        # 逻辑到物理的映射表
        self.page_table = {}
        self.free_pages = list(range(max_pages))

PagedAttention的优势

  1. 内存碎片减少:类似操作系统的虚拟内存管理
  2. 动态分配:按需分配和释放页面
  3. 共享机制:多个序列可以共享相同的prefix页面
  4. 内存利用率:相比传统方法提升60-80%

2.3 具体实现细节

2.3.1 KV Cache的初始化
def initialize_kv_cache(model_config, max_num_seqs, max_seq_len):
    """初始化KV Cache"""
    num_layers = model_config.num_hidden_layers
    num_heads = model_config.num_attention_heads
    head_dim = model_config.hidden_size // num_heads
    
    kv_cache = []
    for layer in range(num_layers):
        layer_cache = {
            'key': torch.zeros(
                (max_num_seqs, max_seq_len, num_heads, head_dim),
                dtype=torch.float16, device='cuda'
            ),
            'value': torch.zeros(
                (max_num_seqs, max_seq_len, num_heads, head_dim),
                dtype=torch.float16, device='cuda'
            )
        }
        kv_cache.append(layer_cache)
    
    return kv_cache
2.3.2 增量更新机制
def update_kv_cache(kv_cache, layer_idx, seq_ids, new_keys, new_values, positions):
    """增量更新KV Cache"""
    key_cache = kv_cache[layer_idx]['key']
    value_cache = kv_cache[layer_idx]['value']
    
    # 批量更新
    for i, seq_id in enumerate(seq_ids):
        pos = positions[i]
        key_cache[seq_id, pos] = new_keys[i]
        value_cache[seq_id, pos] = new_values[i]
2.3.3 注意力计算优化
def paged_attention_forward(
    query, key_cache, value_cache, page_table, 
    context_lens, block_size=16
):
    """PagedAttention前向计算"""
    batch_size, num_heads, head_dim = query.shape
    
    # 收集所有相关的KV页面
    key_blocks = []
    value_blocks = []
    
    for seq_id in range(batch_size):
        seq_len = context_lens[seq_id]
        num_blocks = (seq_len + block_size - 1) // block_size
        
        seq_key_blocks = []
        seq_value_blocks = []
        
        for block_idx in range(num_blocks):
            physical_block = page_table[seq_id][block_idx]
            seq_key_blocks.append(key_cache[physical_block])
            seq_value_blocks.append(value_cache[physical_block])
        
        key_blocks.append(torch.cat(seq_key_blocks, dim=0)[:seq_len])
        value_blocks.append(torch.cat(seq_value_blocks, dim=0)[:seq_len])
    
    # 执行注意力计算
    attention_scores = torch.matmul(query, key_blocks.transpose(-2, -1))
    attention_weights = torch.softmax(attention_scores / math.sqrt(head_dim), dim=-1)
    output = torch.matmul(attention_weights, value_blocks)
    
    return output

第三章:高级优化技术

3.1 内存管理策略

3.1.1 LRU淘汰机制
class LRUKVCache:
    def __init__(self, max_cache_size):
        self.max_cache_size = max_cache_size
        self.cache = {}
        self.access_order = []
    
    def get(self, seq_id):
        if seq_id in self.cache:
            # 更新访问顺序
            self.access_order.remove(seq_id)
            self.access_order.append(seq_id)
            return self.cache[seq_id]
        return None
    
    def put(self, seq_id, kv_data):
        if len(self.cache) >= self.max_cache_size:
            # 淘汰最久未使用的
            oldest = self.access_order.pop(0)
            del self.cache[oldest]
        
        self.cache[seq_id] = kv_data
        self.access_order.append(seq_id)
3.1.2 Prefix共享优化
def share_prefix_cache(sequences, kv_cache):
    """共享相同前缀的KV Cache"""
    prefix_map = {}
    
    for seq_id, tokens in enumerate(sequences):
        # 查找最长公共前缀
        for length in range(len(tokens), 0, -1):
            prefix = tuple(tokens[:length])
            if prefix in prefix_map:
                # 复用现有的KV Cache
                shared_seq_id = prefix_map[prefix]
                copy_kv_cache(kv_cache, shared_seq_id, seq_id, length)
                break
            else:
                prefix_map[prefix] = seq_id

3.2 并行化策略

3.2.1 Tensor并行
class TensorParallelKVCache:
    def __init__(self, world_size, rank):
        self.world_size = world_size
        self.rank = rank
        
        # 每个GPU负责一部分注意力头
        self.local_heads = num_heads // world_size
        self.head_offset = rank * self.local_heads
    
    def split_kv_heads(self, keys, values):
        """按注意力头分割KV"""
        start_idx = self.head_offset
        end_idx = start_idx + self.local_heads
        
        local_keys = keys[:, start_idx:end_idx, :]
        local_values = values[:, start_idx:end_idx, :]
        
        return local_keys, local_values
3.2.2 Pipeline并行
class PipelineKVCache:
    def __init__(self, pipeline_stages):
        self.stages = pipeline_stages
        self.stage_caches = [KVCache() for _ in range(pipeline_stages)]
    
    def forward_stage(self, stage_id, hidden_states, kv_cache):
        """单个pipeline阶段的处理"""
        # 从上一阶段接收KV Cache
        if stage_id > 0:
            kv_cache = self.receive_kv_from_prev_stage()
        
        # 当前阶段计算
        new_hidden_states = self.layers[stage_id](hidden_states, kv_cache)
        
        # 发送KV Cache到下一阶段
        if stage_id < len(self.stages) - 1:
            self.send_kv_to_next_stage(kv_cache)
        
        return new_hidden_states

3.3 量化技术

3.3.1 KV Cache量化
def quantize_kv_cache(keys, values, bits=8):
    """量化KV Cache到指定位数"""
    
    def quantize_tensor(tensor, bits):
        # 计算量化参数
        min_val = tensor.min()
        max_val = tensor.max()
        scale = (max_val - min_val) / (2**bits - 1)
        zero_point = min_val
        
        # 量化
        quantized = torch.round((tensor - zero_point) / scale)
        quantized = torch.clamp(quantized, 0, 2**bits - 1)
        
        return quantized.to(torch.uint8), scale, zero_point
    
    # 分别量化K和V
    q_keys, k_scale, k_zero = quantize_tensor(keys, bits)
    q_values, v_scale, v_zero = quantize_tensor(values, bits)
    
    return {
        'keys': q_keys, 'key_scale': k_scale, 'key_zero': k_zero,
        'values': q_values, 'value_scale': v_scale, 'value_zero': v_zero
    }

def dequantize_kv_cache(quantized_cache):
    """反量化KV Cache"""
    keys = quantized_cache['keys'].float()
    keys = keys * quantized_cache['key_scale'] + quantized_cache['key_zero']
    
    values = quantized_cache['values'].float()
    values = values * quantized_cache['value_scale'] + quantized_cache['value_zero']
    
    return keys, values

第四章:实际应用与案例分析

4.1 聊天机器人场景

class ChatBotKVManager:
    def __init__(self):
        self.conversation_cache = {}
        self.max_context_length = 4096
    
    def process_message(self, user_id, message):
        """处理用户消息并维护对话上下文"""
        
        # 获取或创建用户的KV Cache
        if user_id not in self.conversation_cache:
            self.conversation_cache[user_id] = {
                'kv_cache': self.initialize_cache(),
                'token_count': 0,
                'conversation_history': []
            }
        
        user_cache = self.conversation_cache[user_id]
        
        # 检查是否需要截断历史
        if user_cache['token_count'] > self.max_context_length:
            user_cache = self.truncate_context(user_cache)
        
        # 编码新消息
        new_tokens = self.tokenizer.encode(message)
        
        # 使用现有KV Cache进行推理
        response = self.generate_response(
            new_tokens, 
            user_cache['kv_cache']
        )
        
        # 更新缓存
        self.update_cache(user_cache, new_tokens, response)
        
        return response

4.2 代码生成场景

在代码生成任务中,KV Cache特别有效,因为代码往往具有结构化的上下文:

class CodeGenerationOptimizer:
    def __init__(self):
        self.function_cache = {}  # 缓存函数级别的KV
        self.import_cache = {}    # 缓存import语句的KV
    
    def generate_code(self, prompt):
        """优化的代码生成"""
        
        # 解析prompt中的导入语句
        imports = self.extract_imports(prompt)
        
        # 复用import的KV Cache
        import_kv = self.get_cached_imports(imports)
        
        # 识别函数定义模式
        function_patterns = self.extract_function_patterns(prompt)
        
        # 使用模式匹配复用相似函数的KV
        pattern_kv = self.get_pattern_cache(function_patterns)
        
        # 组合缓存进行生成
        combined_kv = self.combine_caches([import_kv, pattern_kv])
        
        return self.model.generate(prompt, kv_cache=combined_kv)

4.3 性能监控与调优

class KVCacheProfiler:
    def __init__(self):
        self.metrics = {
            'cache_hit_rate': 0.0,
            'memory_usage': 0.0,
            'access_patterns': {},
            'eviction_count': 0
        }
    
    def profile_cache_performance(self, kv_cache_manager):
        """分析KV Cache性能"""
        
        # 缓存命中率
        total_requests = kv_cache_manager.total_requests
        cache_hits = kv_cache_manager.cache_hits
        self.metrics['cache_hit_rate'] = cache_hits / total_requests
        
        # 内存使用情况
        memory_used = kv_cache_manager.get_memory_usage()
        total_memory = kv_cache_manager.max_memory
        self.metrics['memory_usage'] = memory_used / total_memory
        
        # 访问模式分析
        self.analyze_access_patterns(kv_cache_manager.access_log)
        
        return self.metrics
    
    def suggest_optimizations(self):
        """基于profile结果提出优化建议"""
        suggestions = []
        
        if self.metrics['cache_hit_rate'] < 0.7:
            suggestions.append("考虑增加cache大小或优化淘汰策略")
        
        if self.metrics['memory_usage'] > 0.9:
            suggestions.append("启用KV量化或增强压缩")
        
        return suggestions

第五章:前沿技术与未来发展

5.1 Multi-Query Attention (MQA)

MQA通过共享Key和Value的投影矩阵来减少KV Cache的内存占用:

class MQAKVCache:
    def __init__(self, num_query_heads, num_kv_heads, head_dim):
        self.num_query_heads = num_query_heads
        self.num_kv_heads = num_kv_heads  # << num_query_heads
        self.head_dim = head_dim
        
        # KV头数量大大减少
        self.kv_cache_size = num_kv_heads * head_dim
        
    def compute_attention(self, query, key, value):
        """MQA注意力计算"""
        # Query: [batch, seq_len, num_query_heads, head_dim]
        # Key/Value: [batch, seq_len, num_kv_heads, head_dim]
        
        # 复制KV到匹配Query头数
        heads_per_kv = self.num_query_heads // self.num_kv_heads
        
        expanded_key = key.repeat_interleave(heads_per_kv, dim=2)
        expanded_value = value.repeat_interleave(heads_per_kv, dim=2)
        
        return self.scaled_dot_product_attention(query, expanded_key, expanded_value)

5.2 Grouped Query Attention (GQA)

GQA是MQA的改进版本,在性能和内存之间找到更好的平衡:

class GQAKVCache:
    def __init__(self, num_query_heads, num_groups, head_dim):
        self.num_query_heads = num_query_heads
        self.num_groups = num_groups
        self.num_kv_heads = num_groups  # 介于1和num_query_heads之间
        self.heads_per_group = num_query_heads // num_groups
        
    def group_attention(self, query, key, value):
        """分组注意力计算"""
        batch_size, seq_len, _, head_dim = query.shape
        
        # 重新组织Query为组结构
        query_grouped = query.view(
            batch_size, seq_len, self.num_groups, self.heads_per_group, head_dim
        )
        
        # 对每个组独立计算注意力
        outputs = []
        for group_idx in range(self.num_groups):
            group_query = query_grouped[:, :, group_idx]  # [batch, seq, heads_per_group, head_dim]
            group_key = key[:, :, group_idx:group_idx+1].expand(-1, -1, self.heads_per_group, -1)
            group_value = value[:, :, group_idx:group_idx+1].expand(-1, -1, self.heads_per_group, -1)
            
            group_output = self.scaled_dot_product_attention(group_query, group_key, group_value)
            outputs.append(group_output)
        
        return torch.cat(outputs, dim=2)

5.3 稀疏注意力与KV Cache

class SparseKVCache:
    def __init__(self, sparsity_pattern="local_global"):
        self.sparsity_pattern = sparsity_pattern
        self.local_window = 512
        self.global_tokens = 128
    
    def create_sparse_mask(self, seq_len):
        """创建稀疏注意力掩码"""
        mask = torch.zeros(seq_len, seq_len)
        
        if self.sparsity_pattern == "local_global":
            # 局部窗口
            for i in range(seq_len):
                start = max(0, i - self.local_window // 2)
                end = min(seq_len, i + self.local_window // 2)
                mask[i, start:end] = 1
            
            # 全局token
            mask[:, :self.global_tokens] = 1
            mask[:self.global_tokens, :] = 1
        
        return mask.bool()
    
    def sparse_attention(self, query, key, value, mask):
        """稀疏注意力计算"""
        scores = torch.matmul(query, key.transpose(-2, -1))
        scores = scores.masked_fill(~mask, float('-inf'))
        weights = torch.softmax(scores, dim=-1)
        return torch.matmul(weights, value)

5.4 动态KV Cache压缩

class DynamicKVCompressor:
    def __init__(self, compression_ratio=0.5):
        self.compression_ratio = compression_ratio
        self.importance_threshold = 0.1
    
    def compute_token_importance(self, attention_weights):
        """计算token重要性分数"""
        # 基于注意力权重计算重要性
        importance_scores = attention_weights.mean(dim=(0, 1))  # 平均所有头和batch
        return importance_scores
    
    def compress_kv_cache(self, kv_cache, attention_weights):
        """动态压缩KV Cache"""
        importance_scores = self.compute_token_importance(attention_weights)
        
        # 选择重要的token
        num_keep = int(len(importance_scores) * (1 - self.compression_ratio))
        _, important_indices = torch.topk(importance_scores, num_keep)
        
        # 压缩KV Cache
        compressed_kv = {
            'keys': kv_cache['keys'][:, important_indices],
            'values': kv_cache['values'][:, important_indices],
            'indices': important_indices
        }
        
        return compressed_kv

第六章:最佳实践与部署指南

6.1 生产环境配置

class ProductionKVCacheConfig:
    """生产环境KV Cache配置"""
    
    def __init__(self, model_size, expected_qps, hardware_spec):
        self.model_size = model_size
        self.expected_qps = expected_qps
        self.hardware_spec = hardware_spec
        
        # 根据模型大小和硬件配置推荐参数
        self.recommended_config = self.calculate_optimal_config()
    
    def calculate_optimal_config(self):
        """计算最优配置参数"""
        config = {}
        
        # 基于GPU内存计算最大批处理大小
        gpu_memory_gb = self.hardware_spec['gpu_memory']
        model_memory_gb = self.estimate_model_memory()
        
        # 为KV Cache预留内存(通常是模型大小的50-70%)
        kv_memory_budget = (gpu_memory_gb - model_memory_gb) * 0.8
        
        # 计算最大序列长度和批处理大小
        config['max_seq_len'] = min(4096, self.calculate_max_seq_len(kv_memory_budget))
        config['max_batch_size'] = self.calculate_max_batch_size(kv_memory_budget)
        
        # 页面大小优化
        config['page_size'] = 16  # 通常16是最佳选择
        
        # 量化设置
        if gpu_memory_gb < 24:  # 较小GPU启用量化
            config['enable_kv_quantization'] = True
            config['kv_quantization_bits'] = 8
        
        return config

6.2 监控与告警

class KVCacheMonitor:
    def __init__(self, alert_thresholds):
        self.alert_thresholds = alert_thresholds
        self.metrics_collector = MetricsCollector()
    
    def collect_metrics(self, kv_cache_manager):
        """收集KV Cache相关指标"""
        metrics = {
            'memory_usage_percent': kv_cache_manager.get_memory_usage_percent(),
            'cache_hit_rate': kv_cache_manager.get_hit_rate(),
            'avg_sequence_length': kv_cache_manager.get_avg_sequence_length(),
            'eviction_rate': kv_cache_manager.get_eviction_rate(),
            'page_utilization': kv_cache_manager.get_page_utilization()
        }
        
        # 检查告警条件
        self.check_alerts(metrics)
        
        return metrics
    
    def check_alerts(self, metrics):
        """检查告警条件"""
        if metrics['memory_usage_percent'] > self.alert_thresholds['memory']:
            self.send_alert('HIGH_MEMORY_USAGE', metrics['memory_usage_percent'])
        
        if metrics['cache_hit_rate'] < self.alert_thresholds['hit_rate']:
            self.send_alert('LOW_CACHE_HIT_RATE', metrics['cache_hit_rate'])

6.3 A/B测试框架

class KVCacheABTest:
    def __init__(self):
        self.experiments = {}
        self.traffic_splitter = TrafficSplitter()
    
    def create_experiment(self, name, control_config, treatment_config, traffic_percent):
        """创建A/B测试实验"""
        self.experiments[name] = {
            'control': control_config,
            'treatment': treatment_config,
            'traffic_percent': traffic_percent,
            'metrics': {'control': [], 'treatment': []}
        }
    
    def route_request(self, request, experiment_name):
        """根据实验配置路由请求"""
        experiment = self.experiments[experiment_name]
        
        if self.traffic_splitter.should_use_treatment(experiment['traffic_percent']):
            # 使用实验组配置
            return self.process_with_config(request, experiment['treatment'])
        else:
            # 使用对照组配置
            return self.process_with_config(request, experiment['control'])

结语:KV Cache技术的现状与展望

KV Cache技术已经成为现代LLM推理系统的核心组件。从最初的简单缓存机制,到vLLM的PagedAttention创新,再到最新的稀疏注意力和动态压缩技术,这个领域正在快速发展。

关键收益总结

  1. 性能提升:70-90%的延迟降低,2-5倍的吞吐量提升
  2. 成本优化:显著降低推理成本,提高资源利用率
  3. 用户体验:更流畅的交互体验,更快的响应时间

未来发展方向

  1. 硬件协同设计:与专用AI芯片的深度集成
  2. 算法创新:更高效的注意力机制和缓存策略
  3. 系统优化:跨设备、跨集群的分布式KV Cache
  4. 智能化管理:基于AI的缓存策略自动优化

实践建议

对于技术团队:

  • 从业务场景出发选择合适的KV Cache策略
  • 重视监控和性能调优
  • 持续关注最新技术发展

对于研究人员:

  • 探索新的注意力机制和缓存算法
  • 关注硬件特性与算法的协同设计
  • 推动标准化和最佳实践的建立

KV Cache技术的发展远未结束,它将继续是LLM推理优化的重要战场。

### KV-Cache 技术在大型语言模型中的实现与优化 #### 背景介绍 缓存技术是现代计算架构中不可或缺的一部分,尤其是在高性能处理器设计中。例如,在Nehalem核心结构中,L1缓存被分为指令缓存和数据缓存两部分[^1]。这种分离的设计可以有效减少访问冲突并提高性能。然而,对于大规模语言模型(LLMs),KV-Cache 的作用更为复杂且重要。 #### 大型语言模型中的 KV-Cache 原理 在 LLMs 中,KV-Cache 是一种用于加速推理过程的技术。具体来说,它通过存储先前生成 token 对应的键值对来避免重复计算注意力机制的结果。这一方法显著降低了计算开销,特别是在处理长序列时效果尤为明显。 - **Key 和 Value 的定义**: 在 Transformer 架构下,输入经过多头自注意层后会生成 Keys 和 Values。这些中间结果会被保存到 KV 缓冲区以便后续使用。 - **工作流程**: - 当前时刻 t 的新输入仅需与其自身的 Key 进行比较以及利用之前所有时间步共享的 Value 向量即可完成上下文理解。 - 此外,在解码阶段每新增一个词元,则更新一次对应的 K/V pair 并追加至已有列表末端形成滑动窗口形式管理历史记录。 ```python class KeyValueCache: def __init__(self, max_length): self.keys = [] self.values = [] self.max_length = max_length def append(self, key, value): if len(self.keys) >= self.max_length: self.keys.pop(0) self.values.pop(0) self.keys.append(key) self.values.append(value) def get_cache(self): return torch.stack(self.keys), torch.stack(self.values) ``` 上述代码片段展示了一个简单的 KV 缓存类实现方式[^4]。其中 `append` 方法负责向队列末尾增加新的键值对;而当达到预设最大长度限制时则移除最早加入的那一组数据项以维持固定大小范围内的高效检索操作特性。 #### 实现细节与优化策略 为了进一步提升效率还可以采取如下措施: - **分片存储**: 将整个缓存划分为多个较小的部分分别驻留在不同物理位置上从而降低单点负载压力同时增强并发能力。 - **压缩算法应用**: 针对某些特定场景可考虑采用无损压缩手段缩减实际占用空间进而间接改善整体表现水平。 关于大数据框架资源汇总方面也有专门整理好的清单可供参考学习[^2]。另外如果涉及到超大 XML 文件解析任务也可以借鉴相关经验技巧来进行流式加载处理[^3]。 #### 总结 综上所述,通过对 Large Language Models 应用合适的 KV-Caching 方案不仅能够带来明显的速度增益而且有助于控制内存消耗成本使之更加适合部署于生产环境中长期稳定运行下去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值