【LLMs篇】20:Claude Code 智能代理完全使用手册

在这里插入图片描述

📖 目录

  1. 概述与核心概念
  2. 代理系统架构
  3. 使用方法详解
  4. 编程语言专家代理
  5. 架构与系统设计代理
  6. 前端与移动开发代理
  7. 数据库与数据处理代理
  8. AI与机器学习代理
  9. 安全与质量保证代理
  10. DevOps与部署代理
  11. 性能与优化代理
  12. 搜索与研究代理
  13. 内容与文档代理
  14. 专业工具代理
  15. 专业领域代理
  16. 代理协作策略
  17. 高级使用技巧
  18. 常见问题与解决方案

概述与核心概念

Claude Code(https://github.com/wshobson/agents)提供了一个由 68个高度专业化的智能代理 组成的生态系统,每个代理都在特定技术领域拥有深度专长。这不是简单的工具集合,而是一个 协作式AI开发平台,能够理解复杂的开发需求并提供企业级的解决方案。

🎯 核心优势

专业化深度: 每个代理都针对特定领域进行了深度优化,拥有该领域的最佳实践、设计模式和解决方案
智能路由: 系统会自动分析任务特征,选择最适合的代理或代理组合
上下文感知: 代理间可以共享上下文信息,确保解决方案的一致性
主动协作: 代理会主动识别需要其他专家介入的情况
持续学习: 基于项目特征和代码风格,动态调整工作方式

🔧 代理分类体系

  • 核心开发代理 (24个): 涵盖主流编程语言和框架
  • 架构设计代理 (8个): 负责系统设计和架构决策
  • 运维部署代理 (12个): 处理DevOps、部署和基础设施
  • 专业领域代理 (16个): 针对特定行业和应用场景
  • 质量保证代理 (8个): 确保代码质量、安全性和性能

代理系统架构

🏗️ 三层架构设计

┌─────────────────────────────────────┐
│         用户接口层                    │
│    (自然语言理解 & 任务路由)           │  
├─────────────────────────────────────┤
│         代理编排层                    │
│  (任务分解 & 代理协调 & 上下文管理)     │
├─────────────────────────────────────┤
│         专业代理层                    │
│     (68个专业化代理执行层)            │
└─────────────────────────────────────┘

🔄 工作流程

  1. 需求分析: 解析用户请求,识别任务类型和复杂度
  2. 代理选择: 基于任务特征选择最适合的代理组合
  3. 任务分解: 将复杂任务分解为可执行的子任务
  4. 并行执行: 多个代理同时工作,提高效率
  5. 结果整合: 整合各代理的输出,形成统一解决方案
  6. 质量验证: 自动验证结果的正确性和完整性

使用方法详解

🎯 基本使用模式

直接任务描述 (推荐)
# 自动代理选择
"帮我优化这个React组件的性能"
"设计一个高可用的微服务架构"  
"修复这个SQL查询的性能问题"

# 系统会自动选择: frontend-developer + performance-engineer
# 或 backend-architect + cloud-architect  
# 或 sql-pro + database-optimizer
明确代理指定
"使用 typescript-pro 重构这个复杂的类型系统"
"让 security-auditor 审查这个认证模块"
"用 ai-engineer 构建一个RAG系统"
多代理协作
"使用 backend-architect 设计API,然后用 frontend-developer 创建对应的UI组件"
"让 data-engineer 构建数据管道,data-scientist 进行分析"

🚀 高级调用模式

条件触发模式
"当代码覆盖率低于80%时,自动调用 test-automator"
"在部署失败时,立即启用 incident-responder"  
"检测到性能问题时,激活 performance-engineer"
流水线模式
"创建一个完整的开发流水线:
1. architect-reviewer 设计架构
2. 对应语言专家实现功能  
3. test-automator 创建测试
4. security-auditor 安全审查
5. deployment-engineer 配置部署"

📋 任务追踪与管理

每个复杂任务都会创建详细的任务列表:

✅ 分析现有架构和痛点
🔄 设计新的微服务架构  
⏳ 创建API接口规范
⏳ 实现核心业务逻辑
⏳ 配置数据库和缓存
⏳ 编写单元和集成测试
⏳ 设置CI/CD管道
⏳ 部署到测试环境
⏳ 性能测试和优化
⏳ 生产环境部署

📚 编程语言专家代理

Python专家 (python-pro)

🎯 核心专长

  • 高级语言特性: 装饰器、生成器、上下文管理器、元类
  • 异步编程: async/await、asyncio、并发模式、异步IO优化
  • 性能优化: 内存管理、GIL理解、Cython集成、性能分析
  • 设计模式: 单例、工厂、观察者、策略模式的Pythonic实现
  • 测试框架: pytest、unittest、mock、测试驱动开发
  • 包管理: setuptools、pip、poetry、虚拟环境最佳实践

🚀 典型使用场景

  1. 性能关键代码优化
# 使用案例: 优化数据处理管道
"我有一个处理大量CSV文件的脚本很慢,帮我优化"

# Python专家会分析并重构为:
import asyncio
import aiofiles
from typing import AsyncGenerator
from concurrent.futures import ProcessPoolExecutor

async def process_csv_files(file_paths: list) -> AsyncGenerator:
    """异步并行处理CSV文件"""
    with ProcessPoolExecutor() as executor:
        tasks = [
            asyncio.get_event_loop().run_in_executor(
                executor, process_single_csv, path
            ) for path in file_paths
        ]
        for task in asyncio.as_completed(tasks):
            yield await task
  1. 复杂数据结构设计
# 使用案例: 设计缓存系统
"帮我设计一个支持LRU和TTL的缓存系统"

# Python专家会实现:
from collections import OrderedDict
from typing import Generic, TypeVar, Optional
import time
import threading

T = TypeVar('T')

class TTLLRUCache(Generic[T]):
    def __init__(self, capacity: int, ttl: float):
        self._cache: OrderedDict[str, tuple[T, float]] = OrderedDict()
        self._capacity = capacity
        self._ttl = ttl
        self._lock = threading.RLock()
    
    def get(self, key: str) -> Optional[T]:
        with self._lock:
            if key not in self._cache:
                return None
            
            value, timestamp = self._cache[key]
            if time.time() - timestamp > self._ttl:
                del self._cache[key]
                return None
            
            # LRU: 移动到末尾
            self._cache.move_to_end(key)
            return value
  1. Web框架集成
# 使用案例: FastAPI + 异步数据库
"构建一个高性能的API服务,支持数据库连接池"

# Python专家会创建:
from fastapi import FastAPI, Depends
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from contextlib import asynccontextmanager

@asynccontextmanager
async def lifespan(app: FastAPI):
    # 启动时创建连接池
    app.state.db_engine = create_async_engine(
        DATABASE_URL, 
        pool_size=20, 
        max_overflow=30
    )
    yield
    # 关闭时清理资源
    await app.state.db_engine.dispose()

app = FastAPI(lifespan=lifespan)

⚡ 主动触发条件

  • 检测到Python性能瓶颈时
  • 需要重构复杂Python逻辑时
  • 处理大数据量或高并发需求时
  • 集成机器学习模型时

Java专家 (java-pro)

🎯 核心专长

  • 现代Java特性: Stream API、Lambda、方法引用、模块系统
  • 并发编程: CompletableFuture、并行流、线程池、锁优化
  • JVM调优: GC优化、内存分析、性能监控、堆外内存
  • Spring生态: Spring Boot、Spring Security、Spring Data、微服务
  • 企业模式: DDD、CQRS、事件驱动、分布式事务
  • 响应式编程: Project Reactor、RxJava、非阻塞IO

🚀 典型使用场景

  1. 高并发服务设计
// 使用案例: 设计高吞吐量的订单处理服务
"构建一个能处理每秒10万订单的服务"

@Service
@Slf4j
public class OrderProcessingService {
    
    private final OrderRepository orderRepository;
    private final PaymentService paymentService;
    private final Executor taskExecutor;
    
    @Async("orderProcessingExecutor")
    public CompletableFuture<OrderResult> processOrderAsync(Order order) {
        return CompletableFuture
            .supplyAsync(() -> validateOrder(order), taskExecutor)
            .thenCompose(validOrder -> processPayment(validOrder))
            .thenCompose(paidOrder -> saveOrder(paidOrder))
            .thenApply(this::generateResult)
            .exceptionally(this::handleProcessingError);
    }
    
    @Bean("orderProcessingExecutor")
    public Executor orderProcessingExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(50);
        executor.setMaxPoolSize(200);
        executor.setQueueCapacity(1000);
        executor.setThreadNamePrefix("OrderProcessor-");
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        return executor;
    }
}
  1. 微服务架构实现
// 使用案例: 实现服务熔断和降级
"为微服务添加熔断器和重试机制"

@Component
public class UserServiceClient {
    
    @Retryable(value = {Exception.class}, 
               maxAttempts = 3, 
               backoff = @Backoff(delay = 1000, multiplier = 2))
    @CircuitBreaker(name = "user-service", fallbackMethod = "getUserFallback")
    public User getUser(Long userId) {
        return restTemplate.getForObject(
            "/api/users/{id}", User.class, userId);
    }
    
    @TimeLimiter(name = "user-service")
    public CompletableFuture<User> getUserAsync(Long userId) {
        return CompletableFuture.supplyAsync(() -> getUser(userId));
    }
    
    public User getUserFallback(Long userId, Exception ex) {
        log.warn("Fallback for user {}: {}", userId, ex.getMessage());
        return User.builder()
            .id(userId)
            .name("Unknown User")
            .build();
    }
}

⚡ 主动触发条件

  • Spring Boot应用优化需求
  • 高并发性能问题
  • 企业级架构设计
  • JVM内存或GC问题

TypeScript专家 (typescript-pro)

🎯 核心专长

  • 高级类型系统: 泛型约束、条件类型、映射类型、模板字面量类型
  • 类型体操: 类型推断、类型变换、递归类型、分布式条件类型
  • 企业级架构: 模块系统、命名空间、声明合并、模块解析
  • 装饰器: 元数据、反射、依赖注入、AOP实现
  • 性能优化: 编译优化、类型检查优化、增量编译
  • 现代框架集成: React、Vue、Node.js的类型安全实现

🚀 典型使用场景

  1. 类型安全的状态管理
// 使用案例: 设计类型安全的Redux Store
"创建一个完全类型安全的状态管理系统"

// TypeScript专家会设计:
type AppState = {
  user: UserState;
  posts: PostsState;
  ui: UIState;
};

type ActionType = 
  | { type: 'USER_LOGIN'; payload: { user: User; token: string } }
  | { type: 'USER_LOGOUT' }
  | { type: 'POSTS_LOAD_START' }
  | { type: 'POSTS_LOAD_SUCCESS'; payload: { posts: Post[] } }
  | { type: 'POSTS_LOAD_ERROR'; payload: { error: string } };

// 类型安全的reducer
const appReducer = (state: AppState, action: ActionType): AppState => {
  switch (action.type) {
    case 'USER_LOGIN':
      return {
        ...state,
        user: {
          ...state.user,
          data: action.payload.user,
          isAuthenticated: true,
          token: action.payload.token,
        },
      };
    // 其他case会有完整的类型推断和检查
  }
};

// 类型安全的selector
const createTypedSelector = <T>(selector: (state: AppState) => T) => selector;

const selectUser = createTypedSelector(state => state.user.data);
const selectPosts = createTypedSelector(state => state.posts.items);
  1. 高级泛型实用工具
// 使用案例: 创建API客户端的类型安全包装
"设计一个类型安全的API客户端"

// 递归深度只读类型
type DeepReadonly<T> = {
  readonly [P in keyof T]: T[P] extends (infer U)[]
    ? readonly DeepReadonly<U>[]
    : T[P] extends Record<string, any>
    ? DeepReadonly<T[P]>
    : T[P];
};

// API端点配置类型
type ApiEndpoint<TRequest = void, TResponse = unknown> = {
  method: 'GET' | 'POST' | 'PUT' | 'DELETE';
  path: string;
  request: TRequest;
  response: TResponse;
};

// 类型安全的API客户端
class TypeSafeApiClient {
  async call<T extends ApiEndpoint>(
    endpoint: T,
    ...[request]: T['request'] extends void ? [] : [T['request']]
  ): Promise<T['response']> {
    const response = await fetch(endpoint.path, {
      method: endpoint.method,
      body: request ? JSON.stringify(request) : undefined,
      headers: { 'Content-Type': 'application/json' },
    });
    return response.json();
  }
}

// 使用示例 - 完全类型安全
const userEndpoint: ApiEndpoint<{ id: number }, User> = {
  method: 'GET',
  path: '/api/users',
  request: { id: 1 },
  response: {} as User,
};

const client = new TypeSafeApiClient();
// TypeScript会推断出正确的请求和响应类型
const user = await client.call(userEndpoint, { id: 123 });

⚡ 主动触发条件

  • 复杂类型系统设计需求
  • 企业级TypeScript架构
  • 类型安全性问题
  • 高级类型推断需求

JavaScript专家 (javascript-pro)

🎯 核心专长

  • ES6+特性: 解构、模板字符串、箭头函数、模块系统
  • 异步编程: Promise、async/await、事件循环理解、并发模式
  • 函数式编程: 高阶函数、闭包、不可变性、函数组合
  • 性能优化: V8引擎优化、内存泄漏检测、Bundle分析
  • Node.js生态: Express、Koa、微服务、流处理
  • 现代工具链: Webpack、Vite、ESLint、Prettier

🚀 典型使用场景

  1. 事件循环优化
// 使用案例: 处理大量数据而不阻塞UI
"处理10万条记录时页面卡顿,需要优化"

// JavaScript专家会重构为:
async function processLargeDataset(data, chunkSize = 1000) {
  const results = [];
  
  for (let i = 0; i < data.length; i += chunkSize) {
    const chunk = data.slice(i, i + chunkSize);
    
    // 使用 MessageChannel 避免阻塞主线程
    const processed = await new Promise((resolve) => {
      const channel = new MessageChannel();
      const worker = new Worker('./dataProcessor.js');
      
      channel.port1.onmessage = (e) => resolve(e.data);
      worker.postMessage({ chunk, port: channel.port2 }, [channel.port2]);
    });
    
    results.push(...processed);
    
    // 让出控制权,防止阻塞UI
    await new Promise(resolve => setTimeout(resolve, 0));
  }
  
  return results;
}
  1. 高性能状态管理
// 使用案例: 创建轻量级响应式状态管理
"需要一个简单但高效的状态管理方案"

class ReactiveStore {
  constructor(initialState = {}) {
    this.state = new Proxy(initialState, {
      set: (target, property, value) => {
        const oldValue = target[property];
        target[property] = value;
        
        if (oldValue !== value) {
          this.notify(property, value, oldValue);
        }
        return true;
      }
    });
    
    this.subscribers = new Map();
    this.computedCache = new Map();
  }
  
  subscribe(key, callback) {
    if (!this.subscribers.has(key)) {
      this.subscribers.set(key, new Set());
    }
    this.subscribers.get(key).add(callback);
    
    return () => this.subscribers.get(key)?.delete(callback);
  }
  
  computed(key, computeFn, dependencies) {
    const compute = () => {
      const result = computeFn(this.state);
      this.computedCache.set(key, result);
      return result;
    };
    
    dependencies.forEach(dep => {
      this.subscribe(dep, () => compute());
    });
    
    return () => this.computedCache.get(key);
  }
}

⚡ 主动触发条件

  • JavaScript性能瓶颈
  • 异步流程复杂化
  • Node.js应用优化
  • 前端工具链配置

Go专家 (golang-pro)

🎯 核心专长

  • 并发模型: Goroutines、Channels、Select语句、Context
  • 接口设计: 隐式接口、组合模式、依赖注入
  • 性能优化: 内存对齐、逃逸分析、GC调优、pprof分析
  • 标准库: io、net、context、sync等核心包的高级用法
  • 微服务: gRPC、HTTP服务、中间件、服务发现
  • 并发模式: Worker Pool、Pipeline、Fan-in/Fan-out

🚀 典型使用场景

  1. 高并发数据处理
// 使用案例: 处理高并发API请求
"构建一个能处理10万QPS的HTTP服务"

package main

import (
    "context"
    "fmt"
    "net/http"
    "runtime"
    "sync"
    "time"
)

type Server struct {
    workerPool chan chan Request
    workers    []Worker
    quit       chan bool
}

type Request struct {
    Data     interface{}
    Response chan Response
}

type Worker struct {
    ID         int
    Work       chan Request
    WorkerPool chan chan Request
    QuitCh     chan bool
}

func NewServer(maxWorkers int) *Server {
    pool := make(chan chan Request, maxWorkers)
    server := &Server{
        workerPool: pool,
        quit:       make(chan bool),
    }
    
    // 创建工作者
    server.workers = make([]Worker, maxWorkers)
    for i := 0; i < maxWorkers; i++ {
        worker := Worker{
            ID:         i,
            Work:       make(chan Request),
            WorkerPool: pool,
            QuitCh:     make(chan bool),
        }
        worker.Start()
        server.workers[i] = worker
    }
    
    return server
}

func (w *Worker) Start() {
    go func() {
        for {
            w.WorkerPool <- w.Work
            
            select {
            case request := <-w.Work:
                // 处理请求
                result := processRequest(request.Data)
                request.Response <- Response{Data: result}
                
            case <-w.QuitCh:
                return
            }
        }
    }()
}

// 优雅关闭
func (s *Server) Shutdown(ctx context.Context) error {
    close(s.quit)
    
    done := make(chan bool, len(s.workers))
    for _, worker := range s.workers {
        go func(w Worker) {
            close(w.QuitCh)
            done <- true
        }(worker)
    }
    
    // 等待所有worker关闭或超时
    for i := 0; i < len(s.workers); i++ {
        select {
        case <-done:
        case <-ctx.Done():
            return ctx.Err()
        }
    }
    
    return nil
}

⚡ 主动触发条件

  • Go并发问题
  • 微服务架构需求
  • 高性能服务设计
  • 系统级编程需求

Rust专家 (rust-pro)

🎯 核心专长

  • 所有权系统: 借用检查、生命周期、智能指针
  • 零成本抽象: trait、泛型、宏系统、编译期计算
  • 并发安全: Arc、Mutex、RwLock、Atomic类型、异步编程
  • 性能优化: SIMD、内联汇编、基准测试、profiling
  • 系统编程: FFI、不安全代码、内存管理、操作系统接口
  • 现代生态: Tokio、Serde、Diesel、WebAssembly

🚀 典型使用场景

  1. 高性能计算库
// 使用案例: 实现零拷贝的数据处理管道
"需要一个内存安全但极高性能的数据处理系统"

use std::marker::PhantomData;
use std::sync::{Arc, RwLock};
use tokio::sync::mpsc;

// 零拷贝数据容器
pub struct ZeroCopyBuffer<T> {
    data: Arc<RwLock<Vec<T>>>,
    _phantom: PhantomData<T>,
}

impl<T: Clone + Send + Sync + 'static> ZeroCopyBuffer<T> {
    pub fn new(capacity: usize) -> Self {
        Self {
            data: Arc::new(RwLock::new(Vec::with_capacity(capacity))),
            _phantom: PhantomData,
        }
    }
    
    pub fn view(&self) -> BufferView<T> {
        BufferView {
            data: Arc::clone(&self.data),
            _phantom: PhantomData,
        }
    }
}

pub struct BufferView<T> {
    data: Arc<RwLock<Vec<T>>>,
    _phantom: PhantomData<T>,
}

// 高性能异步处理管道
pub struct ProcessingPipeline<T, U> {
    input_tx: mpsc::UnboundedSender<T>,
    output_rx: mpsc::UnboundedReceiver<U>,
    workers: Vec<tokio::task::JoinHandle<()>>,
}

impl<T, U> ProcessingPipeline<T, U> 
where 
    T: Send + 'static,
    U: Send + 'static,
{
    pub async fn new<F, Fut>(
        worker_count: usize,
        processor: F,
    ) -> Self 
    where
        F: Fn(T) -> Fut + Send + Sync + Clone + 'static,
        Fut: std::future::Future<Output = U> + Send,
    {
        let (input_tx, mut input_rx) = mpsc::unbounded_channel();
        let (output_tx, output_rx) = mpsc::unbounded_channel();
        
        let mut workers = Vec::with_capacity(worker_count);
        
        for _ in 0..worker_count {
            let mut rx = input_rx.clone();
            let tx = output_tx.clone();
            let proc = processor.clone();
            
            let worker = tokio::spawn(async move {
                while let Some(item) = rx.recv().await {
                    let result = proc(item).await;
                    if tx.send(result).is_err() {
                        break;
                    }
                }
            });
            
            workers.push(worker);
        }
        
        Self {
            input_tx,
            output_rx,
            workers,
        }
    }
}

⚡ 主动触发条件

  • 系统级性能要求
  • 内存安全关键场景
  • WebAssembly项目
  • 高并发底层服务

C++专家 (cpp-pro)

🎯 核心专长

  • 现代C++: C++14/17/20特性、概念、模块、协程
  • 内存管理: RAII、智能指针、自定义分配器、内存池
  • 模板编程: 变参模板、SFINAE、类型特征、元编程
  • 性能优化: 编译器优化、内联、分支预测、缓存友好设计
  • STL高级用法: 算法、容器、迭代器、函数对象
  • 并发编程: 原子操作、内存序、线程池、无锁数据结构

🚀 典型使用场景

  1. 高性能容器设计
// 使用案例: 设计缓存友好的高性能容器
"需要一个比std::vector更快的动态数组"

#include <memory>
#include <iterator>
#include <algorithm>

template<typename T, typename Allocator = std::allocator<T>>
class fast_vector {
public:
    using value_type = T;
    using allocator_type = Allocator;
    using size_type = std::size_t;
    using iterator = T*;
    using const_iterator = const T*;

private:
    static constexpr size_type INITIAL_CAPACITY = 16;
    static constexpr double GROWTH_FACTOR = 1.618; // 黄金比例增长
    
    T* data_;
    size_type size_;
    size_type capacity_;
    [[no_unique_address]] Allocator alloc_;

    // 预取优化
    void prefetch_write(void* addr) const noexcept {
        #ifdef __builtin_prefetch
        __builtin_prefetch(addr, 1, 3);
        #endif
    }

public:
    fast_vector(const Allocator& alloc = Allocator{})
        : data_(nullptr), size_(0), capacity_(0), alloc_(alloc) {}

    template<typename... Args>
    void emplace_back(Args&&... args) {
        if (size_ == capacity_) [[unlikely]] {
            reserve_grow();
        }
        
        // 预取下一个可能的写入位置
        if (size_ + 1 < capacity_) [[likely]] {
            prefetch_write(data_ + size_ + 1);
        }
        
        std::construct_at(data_ + size_, std::forward<Args>(args)...);
        ++size_;
    }

    void push_back(const T& value) {
        emplace_back(value);
    }

    void push_back(T&& value) {
        emplace_back(std::move(value));
    }

    // 批量操作优化
    template<typename InputIt>
    void insert_range(const_iterator pos, InputIt first, InputIt last) {
        static_assert(std::is_same_v<typename std::iterator_traits<InputIt>::value_type, T>);
        
        const auto distance = std::distance(first, last);
        const auto index = pos - data_;
        
        if (size_ + distance > capacity_) {
            reserve(std::max(capacity_ * GROWTH_FACTOR, size_ + distance));
        }
        
        // 使用memmove进行优化移动(对于trivial类型)
        if constexpr (std::is_trivially_copyable_v<T>) {
            std::memmove(data_ + index + distance, data_ + index, 
                        (size_ - index) * sizeof(T));
            std::uninitialized_copy(first, last, data_ + index);
        } else {
            // 非trivial类型使用标准算法
            std::move_backward(data_ + index, data_ + size_, 
                             data_ + size_ + distance);
            std::uninitialized_copy(first, last, data_ + index);
        }
        
        size_ += distance;
    }

private:
    void reserve_grow() {
        const size_type new_cap = capacity_ == 0 ? 
            INITIAL_CAPACITY : 
            static_cast<size_type>(capacity_ * GROWTH_FACTOR);
        reserve(new_cap);
    }
};

⚡ 主动触发条件

  • C++性能关键代码
  • 现代C++特性需求
  • 内存优化需求
  • 高性能计算场景

🏗️ 架构与系统设计代理

后端架构师 (backend-architect)

功能: 设计RESTful API、微服务边界、数据库模式
使用场景: 创建新的后端服务或API时主动调用
示例:

帮我设计一个电商系统的微服务架构

云架构师 (cloud-architect)

功能: AWS/Azure/GCP基础设施、Terraform IaC、云成本优化
使用场景: 云基础设施、成本优化、迁移规划
示例:

帮我设计一个自动扩展的AWS架构

架构评审师 (architect-reviewer)

功能: 评审代码变更的架构一致性和模式
使用场景: 结构更改、新服务、API修改后主动调用
示例:

评审这个新的API设计是否符合架构原则

GraphQL架构师 (graphql-architect)

功能: 设计GraphQL schema、解析器、联邦
使用场景: GraphQL API设计或性能问题
示例:

帮我设计一个高性能的GraphQL API

🎨 前端与移动开发代理

前端开发师 (frontend-developer)

功能: 构建React组件、响应式布局、客户端状态管理
使用场景: 创建UI组件或修复前端问题时主动调用
示例:

帮我创建一个响应式的数据表格组件

UI/UX设计师 (ui-ux-designer)

功能: 创建界面设计、线框图、设计系统
使用场景: 设计系统、用户流程、界面优化
示例:

帮我设计一个用户友好的登录流程

React Native开发师 (mobile-developer)

功能: 开发React Native或Flutter应用,原生集成
使用场景: 移动功能、跨平台代码、应用优化
示例:

帮我实现一个跨平台的推送通知系统

iOS开发师 (ios-developer)

功能: 原生iOS应用开发,Swift/SwiftUI
使用场景: iOS特定功能、App Store优化
示例:

帮我实现一个原生的iOS相机功能

Flutter专家 (flutter-expert)

功能: 精通Flutter开发,Dart、小部件、平台集成
使用场景: Flutter架构、UI实现、跨平台功能
示例:

帮我优化这个Flutter应用的性能

Unity开发师 (unity-developer)

功能: 构建Unity游戏,优化C#脚本、高效渲染
使用场景: Unity性能问题、游戏机制、跨平台构建
示例:

帮我优化这个Unity游戏的渲染性能

🗄️ 数据库与数据处理代理

SQL专家 (sql-pro)

功能: 编写复杂SQL查询、优化执行计划、设计规范化模式
使用场景: 查询优化、复杂连接、数据库设计
示例:

帮我优化这个慢查询的性能

数据库管理员 (database-admin)

功能: 管理数据库操作、备份、复制、监控
使用场景: 数据库设置、运维问题、恢复程序
示例:

帮我设置一个MySQL主从复制方案

数据库优化师 (database-optimizer)

功能: 优化SQL查询、设计高效索引、处理数据库迁移
使用场景: 数据库性能问题或模式优化
示例:

帮我分析并优化这个数据库的查询性能

数据工程师 (data-engineer)

功能: 构建ETL管道、数据仓库、流处理架构
使用场景: 数据管道设计或分析基础设施
示例:

帮我设计一个实时数据处理管道

数据科学家 (data-scientist)

功能: SQL查询、BigQuery操作、数据分析专家
使用场景: 数据分析任务和查询
示例:

帮我分析用户行为数据找出关键趋势

🧠 AI与机器学习代理

AI工程师 (ai-engineer)

功能: 构建LLM应用、RAG系统、提示管道
使用场景: LLM功能、聊天机器人、AI驱动的应用
示例:

帮我构建一个基于RAG的智能问答系统

ML工程师 (ml-engineer)

功能: 实现ML管道、模型服务、特征工程
使用场景: ML模型集成或生产部署
示例:

帮我部署一个机器学习模型到生产环境

MLOps工程师 (mlops-engineer)

功能: 构建ML管道、实验跟踪、模型注册表
使用场景: ML基础设施、实验管理、管道自动化
示例:

帮我设置一个完整的MLOps流水线

提示工程师 (prompt-engineer)

功能: 为LLM和AI系统优化提示
使用场景: 构建AI功能、改进代理性能、制作系统提示
示例:

帮我优化这个AI助手的提示词

🔒 安全与质量保证代理

安全审计师 (security-auditor)

功能: 审查代码漏洞、实现安全认证、确保OWASP合规
使用场景: 安全评审、认证流程、漏洞修复时主动调用
示例:

帮我审查这个登录系统的安全性

代码评审师 (code-reviewer)

功能: 专业代码评审专家,评估质量、安全性、可维护性
使用场景: 编写或修改代码后立即调用
示例:

评审我刚写的这个API接口代码

测试自动化师 (test-automator)

功能: 创建全面的测试套件,单元、集成、端到端测试
使用场景: 测试覆盖率改进或测试自动化设置时主动调用
示例:

为这个新功能创建完整的测试套件

调试专家 (debugger)

功能: 专门处理错误、测试失败、异常行为的调试
使用场景: 遇到任何问题时主动调用
示例:

帮我调试这个内存泄漏问题

错误侦探 (error-detective)

功能: 搜索日志和代码库中的错误模式、堆栈跟踪
使用场景: 调试问题、分析日志、调查生产错误时主动调用
示例:

帮我分析这个系统崩溃的根本原因

🚀 DevOps与部署代理

部署工程师 (deployment-engineer)

功能: 配置CI/CD管道、Docker容器、云部署
使用场景: 设置部署、容器、CI/CD工作流时主动调用
示例:

帮我设置一个完整的CI/CD管道

DevOps故障排除师 (devops-troubleshooter)

功能: 调试生产问题、分析日志、修复部署失败
使用场景: 生产调试或系统故障时主动调用
示例:

帮我排查这个Kubernetes集群的问题

Terraform专家 (terraform-specialist)

功能: 编写高级Terraform模块、管理状态文件
使用场景: Terraform模块、状态问题、IaC自动化
示例:

帮我创建一个可重用的Terraform模块

网络工程师 (network-engineer)

功能: 调试网络连接、配置负载均衡器、分析流量模式
使用场景: 连接问题、网络优化、协议调试
示例:

帮我诊断这个网络延迟问题

支付集成师 (payment-integration)

功能: 集成Stripe、PayPal等支付处理器
使用场景: 实现支付、计费、订阅功能时主动调用
示例:

帮我集成Stripe支付系统

📊 性能与优化代理

性能工程师 (performance-engineer)

功能: 性能分析、优化瓶颈、实现缓存策略
使用场景: 性能问题或优化任务时主动调用
示例:

帮我优化这个网站的加载速度

风险管理师 (risk-manager)

功能: 监控投资组合风险、R倍数、头寸限制
使用场景: 风险评估、交易跟踪、投资组合保护
示例:

帮我分析这个投资组合的风险水平

量化分析师 (quant-analyst)

功能: 构建金融模型、回测交易策略、分析市场数据
使用场景: 量化金融、交易算法、风险分析
示例:

帮我构建一个股票交易策略回测系统

🔍 搜索与研究代理

搜索专家 (search-specialist)

功能: 使用高级搜索技术的专业网络研究员
使用场景: 深度研究、信息收集、趋势分析时主动调用
示例:

帮我研究最新的AI发展趋势

通用代理 (general-purpose)

功能: 研究复杂问题、搜索代码、执行多步骤任务的通用代理
使用场景: 搜索关键词或文件且不确定能否快速找到时使用
示例:

帮我找到项目中所有与用户认证相关的代码

📝 内容与文档代理

SEO内容写手 (seo-content-writer)

功能: 基于关键词撰写SEO优化的内容
使用场景: 内容创建任务时主动调用
示例:

帮我写一篇关于机器学习的SEO优化文章

文档架构师 (docs-architect)

功能: 从现有代码库创建全面的技术文档
使用场景: 系统文档、架构指南、技术深度分析时主动调用
示例:

为这个微服务系统创建完整的架构文档

API文档师 (api-documenter)

功能: 创建OpenAPI/Swagger规范、生成SDK
使用场景: API文档或客户端库生成时主动调用
示例:

为这个REST API创建完整的文档

教程工程师 (tutorial-engineer)

功能: 从代码创建逐步教程和教育内容
使用场景: 入门指南、功能教程、概念解释时主动调用
示例:

为这个新功能创建用户教程

🛠️ 专业工具代理

事故响应员 (incident-responder)

功能: 紧急处理生产事故
使用场景: 生产问题发生时立即使用
示例:

系统出现严重故障,需要紧急处理

遗留系统现代化师 (legacy-modernizer)

功能: 重构遗留代码库、迁移过时框架
使用场景: 遗留系统更新、框架迁移、技术债务减少时主动调用
示例:

帮我将这个老旧的jQuery应用迁移到React

上下文管理器 (context-manager)

功能: 管理多代理和长期任务的上下文
使用场景: 协调复杂的多代理工作流
示例:

协调多个代理完成这个大型重构项目

DX优化师 (dx-optimizer)

功能: 开发者体验专家,改进工具、设置、工作流
使用场景: 设置新项目、团队反馈后、发现开发摩擦时主动调用
示例:

优化这个项目的开发环境配置

🎯 专业领域代理

Minecraft Bukkit专家 (minecraft-bukkit-pro)

功能: 精通Minecraft服务器插件开发
使用场景: 插件架构、游戏机制、跨版本兼容性时主动调用
示例:

帮我开发一个Minecraft服务器管理插件

销售自动化师 (sales-automator)

功能: 起草冷邮件、跟进、提案模板
使用场景: 销售推广或客户培养时主动调用
示例:

帮我创建一套完整的销售邮件模板

客户支持师 (customer-support)

功能: 处理支持工单、FAQ响应、客户邮件
使用场景: 客户咨询或支持文档时主动调用
示例:

帮我创建产品的FAQ文档

内容营销师 (content-marketer)

功能: 撰写博客文章、社交媒体内容、电子邮件通讯
使用场景: 营销内容或社交媒体帖子时主动调用
示例:

为新产品发布写一篇营销博客

商业分析师 (business-analyst)

功能: 分析指标、创建报告、跟踪KPI
使用场景: 商业指标或投资者更新时主动调用
示例:

帮我分析上季度的用户增长数据

法律顾问 (legal-advisor)

功能: 起草隐私政策、服务条款、免责声明
使用场景: 法律文档、合规文本、监管要求时主动调用
示例:

为我的网站起草GDPR合规的隐私政策

HR专家 (hr-pro)

功能: 专业、合规的HR合作伙伴,处理招聘、入职离职、绩效管理
使用场景: HR政策、员工管理、合规模板
示例:

帮我制定远程工作政策

💡 使用建议

最佳实践

  1. 具体描述任务: 提供详细的上下文和需求
  2. 选择合适代理: 根据任务类型选择最专业的代理
  3. 组合使用: 复杂项目可以结合多个代理
  4. 主动调用: 某些代理会根据任务自动调用

使用技巧

  • 代理会根据你的具体需求自动选择最合适的专业领域
  • 可以在一次对话中使用多个代理
  • 代理会保持任务上下文,无需重复说明背景

常见应用场景

  1. 新项目启动: 使用架构师代理设计系统
  2. 代码优化: 使用对应语言的专家代理
  3. 问题排查: 使用调试专家和错误侦探
  4. 部署上线: 使用DevOps和部署相关代理
  5. 文档编写: 使用文档和API相关代理


🎯 代理协作策略

经典代理组合模式

1. 全栈开发流水线
architect-reviewer → backend-architect → [语言专家] → 
frontend-developer → database-optimizer → test-automator → 
security-auditor → deployment-engineer

使用场景: 从零构建完整的Web应用
协作优势: 每个环节都有专门代理负责,确保最佳实践

2. 性能优化流水线
performance-engineer → [语言专家] → database-optimizer → 
cloud-architect → monitoring-specialist

使用场景: 系统性能问题诊断和优化
协作优势: 从代码到基础设施的全方位优化

3. 安全加固流水线
security-auditor → [语言专家] → network-engineer → 
legal-advisor → compliance-checker

使用场景: 企业级安全合规需求
协作优势: 技术和法律双重保障

代理间通信机制

上下文共享

代理间会自动共享以下信息:

  • 项目架构: 技术栈、框架选择、设计模式
  • 代码规范: 命名规则、格式化标准、最佳实践
  • 性能需求: 延迟要求、吞吐量目标、资源限制
  • 安全策略: 认证方式、加密标准、合规要求
自动触发规则
触发条件:
  代码变更: 
    - code-reviewer (always)
    - security-auditor (if auth/payment related)
    - performance-engineer (if critical path)
  
  部署操作:
    - incident-responder (if failure)
    - monitoring-specialist (always)
    - backup-manager (if database changes)
  
  性能异常:
    - performance-engineer (always)
    - database-optimizer (if DB related) 
    - cloud-architect (if infrastructure related)

🔧 高级使用技巧

1. 智能任务分解

复杂任务示例: “构建一个实时聊天应用”

系统会自动分解为:

📋 任务分解结果:
├── 🏗️ backend-architect: 设计实时通信架构
├── 🗄️ database-optimizer: 设计消息存储方案  
├── 🔒 security-auditor: 设计认证和权限系统
├── 🎨 frontend-developer: 实现聊天UI组件
├── ⚡ performance-engineer: 优化实时性能
├── 🚀 deployment-engineer: 配置WebSocket集群
└── 🧪 test-automator: 创建端到端测试

2. 条件触发与智能路由

智能路由示例:

# 用户请求: "这个API响应很慢"

# 系统分析后的代理调用链:
1. performance-engineer → 分析性能瓶颈
   ↓ 发现是数据库问题
2. database-optimizer → 优化SQL查询
   ↓ 发现需要架构调整  
3. backend-architect → 重新设计数据访问层
   ↓ 需要缓存策略
4. cloud-architect → 设计Redis缓存方案
   ↓ 需要监控
5. monitoring-specialist → 设置性能监控

3. 渐进式优化策略

阶段一: 快速修复

  • debugger: 立即解决阻塞问题
  • performance-engineer: 快速性能调优

阶段二: 架构优化

  • architect-reviewer: 评估架构债务
  • backend-architect: 设计改进方案

阶段三: 全面升级

  • legacy-modernizer: 技术栈升级
  • cloud-architect: 基础设施现代化

4. 专业领域深度整合

金融科技项目:

quant-analyst + risk-manager + security-auditor + 
legal-advisor + compliance-checker

游戏开发项目:

unity-developer + performance-engineer + 
graphics-optimizer + multiplayer-architect

机器学习项目:

ai-engineer + ml-engineer + mlops-engineer + 
data-engineer + performance-engineer

💡 最佳实践指南

1. 代理选择策略

根据项目规模选择

小型项目 (< 1万行代码):

  • 优先使用通用代理如 general-purpose
  • 按需添加专业代理

中型项目 (1-10万行代码):

  • 建立核心代理团队 (3-5个)
  • 设置自动触发规则

大型项目 (> 10万行代码):

  • 使用完整代理生态
  • 启用 context-manager 协调
根据团队技能选择

新手团队:

  • 多使用指导性代理如 tutorial-engineer
  • 启用详细的代码审查流程

专家团队:

  • 专注于架构和优化类代理
  • 减少基础代码生成,增加设计指导

2. 任务描述最佳实践

✅ 推荐的描述方式
# 具体且明确
"优化这个处理1万条用户数据的Python脚本,目标是将执行时间从30秒降到3秒以内"

# 包含上下文
"在我们的电商系统中,添加一个支持并发的库存管理模块,需要防止超卖问题"

# 指定约束条件  
"使用TypeScript重构这个React组件,要求保持向后兼容且提高类型安全性"
❌ 避免的描述方式
# 过于模糊
"帮我写个程序"

# 缺少上下文
"修复这个bug"

# 没有明确目标
"优化一下性能"

3. 协作流程优化

并行工作流
需求分析
backend-architect
frontend-developer
database-optimizer
代码实现
code-reviewer
test-automator
deployment-engineer
迭代改进流程
1. 快速原型 → general-purpose
2. 架构审查 → architect-reviewer  
3. 专业实现 → [对应语言专家]
4. 质量保证 → code-reviewer + test-automator
5. 性能优化 → performance-engineer
6. 安全审查 → security-auditor
7. 生产部署 → deployment-engineer

4. 错误处理与恢复

常见问题及解决方案

问题: 代理选择不当

解决方案: 使用 general-purpose 重新分析需求
备选方案: 明确指定所需的专业代理

问题: 上下文丢失

解决方案: 启用 context-manager 管理长期项目
预防措施: 在重要节点保存项目状态

问题: 代理间冲突

解决方案: 使用 architect-reviewer 协调冲突
标准流程: 建立明确的代理优先级规则

🚀 进阶使用指南

1. 自定义工作流

创建项目模板
# 项目: 微服务API开发
workflow_template:
  name: "microservice-api"
  agents:
    - backend-architect: 
        role: "primary"
        triggers: ["project_start"]
    - security-auditor:
        role: "reviewer" 
        triggers: ["code_commit"]
    - test-automator:
        role: "automation"
        triggers: ["feature_complete"]
  
  quality_gates:
    - coverage_threshold: 80%
    - security_scan: "passed"
    - performance_test: "< 200ms"
设置自动化规则
# 性能监控触发
if response_time > 500ms:
    trigger_agents([
        "performance-engineer",
        "database-optimizer",
        "cloud-architect"
    ])

# 安全事件触发
if security_alert:
    trigger_agents([
        "incident-responder", 
        "security-auditor",
        "legal-advisor"
    ])

2. 企业级集成

CI/CD集成
# .github/workflows/claude-agents.yml
name: Claude Agents Integration

on: [push, pull_request]

jobs:
  code-review:
    steps:
      - uses: actions/checkout@v3
      - name: Code Review
        run: |
          claude-agent code-reviewer \
            --files="${{ github.event.pull_request.changed_files }}" \
            --standards="./code-standards.yml"
  
  security-scan:  
    steps:
      - name: Security Audit
        run: |
          claude-agent security-auditor \
            --scan-type="comprehensive" \
            --report-format="sarif"
监控集成
// 实时性能监控
const claudeMonitoring = {
  performance: {
    threshold: 200, // ms
    agent: 'performance-engineer'
  },
  errors: {
    threshold: 0.01, // 1% error rate  
    agent: 'debugger'
  },
  security: {
    events: ['auth_failure', 'injection_attempt'],
    agent: 'incident-responder'
  }
};

3. 团队协作模式

代码审查流程
1. 开发者提交PR
2. code-reviewer 自动审查
3. 如有问题,相关专家介入
4. architect-reviewer 审查架构影响
5. security-auditor 检查安全问题  
6. 通过后合并代码
知识传承系统
senior-developer + tutorial-engineer → 
    生成新人培训材料
    
expert-team + docs-architect →
    创建技术文档和最佳实践库

🔍 常见问题与解决方案

Q: 如何选择合适的代理?

A: 遵循以下原则:

  1. 任务匹配: 选择专业领域最匹配的代理
  2. 复杂度评估: 简单任务用通用代理,复杂任务用专业代理
  3. 时间权衡: 紧急任务可能需要多代理并行工作
  4. 质量要求: 高质量要求建议使用完整的代理流水线

Q: 代理给出的建议不符合项目需求怎么办?

A: 可以采用以下策略:

  1. 提供更多上下文: 详细描述项目背景、技术栈、约束条件
  2. 明确指定代理: 如果知道需要特定专业知识,直接指定代理类型
  3. 迭代优化: 基于初步建议提出改进要求
  4. 组合使用: 多个代理协作可能得到更好的解决方案

Q: 如何管理长期项目的代理协作?

A: 建议使用以下方法:

  1. 启用 context-manager: 专门处理长期项目的上下文管理
  2. 设置里程碑: 在关键节点总结和保存项目状态
  3. 建立标准流程: 为常见任务建立标准的代理调用流程
  4. 定期评估: 定期使用 architect-reviewer 评估整体架构

Q: 如何确保代理建议的安全性?

A: 安全保障措施:

  1. 自动安全审查: security-auditor 会主动审查涉及安全的代码
  2. 多层验证: 重要功能会有多个代理交叉验证
  3. 最佳实践集成: 代理内置了行业最佳实践和安全标准
  4. 人工审核: 关键决策仍建议人工最终确认

📚 扩展阅读与资源

官方文档

社区资源

培训资料


🎯 总结

Claude Code的68个专业智能代理构成了一个完整的开发生态系统。通过合理选择和组合使用这些代理,你可以:

提高开发效率: 专业代理处理专业问题,避免通用方案的局限性
保证代码质量: 多层次的审查和优化机制
降低技术风险: 内置最佳实践和安全标准
加速团队成长: 通过代理协作学习先进的开发模式

这份完整的使用手册涵盖了Claude Code智能代理系统的所有核心概念、使用方法、最佳实践和高级技巧。希望能帮助你充分利用这个强大的AI开发助手生态系统!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值