📖 目录
- 概述与核心概念
- 代理系统架构
- 使用方法详解
- 编程语言专家代理
- 架构与系统设计代理
- 前端与移动开发代理
- 数据库与数据处理代理
- AI与机器学习代理
- 安全与质量保证代理
- DevOps与部署代理
- 性能与优化代理
- 搜索与研究代理
- 内容与文档代理
- 专业工具代理
- 专业领域代理
- 代理协作策略
- 高级使用技巧
- 常见问题与解决方案
概述与核心概念
Claude Code(https://github.com/wshobson/agents)提供了一个由 68个高度专业化的智能代理 组成的生态系统,每个代理都在特定技术领域拥有深度专长。这不是简单的工具集合,而是一个 协作式AI开发平台,能够理解复杂的开发需求并提供企业级的解决方案。
🎯 核心优势
专业化深度: 每个代理都针对特定领域进行了深度优化,拥有该领域的最佳实践、设计模式和解决方案
智能路由: 系统会自动分析任务特征,选择最适合的代理或代理组合
上下文感知: 代理间可以共享上下文信息,确保解决方案的一致性
主动协作: 代理会主动识别需要其他专家介入的情况
持续学习: 基于项目特征和代码风格,动态调整工作方式
🔧 代理分类体系
- 核心开发代理 (24个): 涵盖主流编程语言和框架
- 架构设计代理 (8个): 负责系统设计和架构决策
- 运维部署代理 (12个): 处理DevOps、部署和基础设施
- 专业领域代理 (16个): 针对特定行业和应用场景
- 质量保证代理 (8个): 确保代码质量、安全性和性能
代理系统架构
🏗️ 三层架构设计
┌─────────────────────────────────────┐
│ 用户接口层 │
│ (自然语言理解 & 任务路由) │
├─────────────────────────────────────┤
│ 代理编排层 │
│ (任务分解 & 代理协调 & 上下文管理) │
├─────────────────────────────────────┤
│ 专业代理层 │
│ (68个专业化代理执行层) │
└─────────────────────────────────────┘
🔄 工作流程
- 需求分析: 解析用户请求,识别任务类型和复杂度
- 代理选择: 基于任务特征选择最适合的代理组合
- 任务分解: 将复杂任务分解为可执行的子任务
- 并行执行: 多个代理同时工作,提高效率
- 结果整合: 整合各代理的输出,形成统一解决方案
- 质量验证: 自动验证结果的正确性和完整性
使用方法详解
🎯 基本使用模式
直接任务描述 (推荐)
# 自动代理选择
"帮我优化这个React组件的性能"
"设计一个高可用的微服务架构"
"修复这个SQL查询的性能问题"
# 系统会自动选择: frontend-developer + performance-engineer
# 或 backend-architect + cloud-architect
# 或 sql-pro + database-optimizer
明确代理指定
"使用 typescript-pro 重构这个复杂的类型系统"
"让 security-auditor 审查这个认证模块"
"用 ai-engineer 构建一个RAG系统"
多代理协作
"使用 backend-architect 设计API,然后用 frontend-developer 创建对应的UI组件"
"让 data-engineer 构建数据管道,data-scientist 进行分析"
🚀 高级调用模式
条件触发模式
"当代码覆盖率低于80%时,自动调用 test-automator"
"在部署失败时,立即启用 incident-responder"
"检测到性能问题时,激活 performance-engineer"
流水线模式
"创建一个完整的开发流水线:
1. architect-reviewer 设计架构
2. 对应语言专家实现功能
3. test-automator 创建测试
4. security-auditor 安全审查
5. deployment-engineer 配置部署"
📋 任务追踪与管理
每个复杂任务都会创建详细的任务列表:
✅ 分析现有架构和痛点
🔄 设计新的微服务架构
⏳ 创建API接口规范
⏳ 实现核心业务逻辑
⏳ 配置数据库和缓存
⏳ 编写单元和集成测试
⏳ 设置CI/CD管道
⏳ 部署到测试环境
⏳ 性能测试和优化
⏳ 生产环境部署
📚 编程语言专家代理
Python专家 (python-pro)
🎯 核心专长
- 高级语言特性: 装饰器、生成器、上下文管理器、元类
- 异步编程: async/await、asyncio、并发模式、异步IO优化
- 性能优化: 内存管理、GIL理解、Cython集成、性能分析
- 设计模式: 单例、工厂、观察者、策略模式的Pythonic实现
- 测试框架: pytest、unittest、mock、测试驱动开发
- 包管理: setuptools、pip、poetry、虚拟环境最佳实践
🚀 典型使用场景
- 性能关键代码优化
# 使用案例: 优化数据处理管道
"我有一个处理大量CSV文件的脚本很慢,帮我优化"
# Python专家会分析并重构为:
import asyncio
import aiofiles
from typing import AsyncGenerator
from concurrent.futures import ProcessPoolExecutor
async def process_csv_files(file_paths: list) -> AsyncGenerator:
"""异步并行处理CSV文件"""
with ProcessPoolExecutor() as executor:
tasks = [
asyncio.get_event_loop().run_in_executor(
executor, process_single_csv, path
) for path in file_paths
]
for task in asyncio.as_completed(tasks):
yield await task
- 复杂数据结构设计
# 使用案例: 设计缓存系统
"帮我设计一个支持LRU和TTL的缓存系统"
# Python专家会实现:
from collections import OrderedDict
from typing import Generic, TypeVar, Optional
import time
import threading
T = TypeVar('T')
class TTLLRUCache(Generic[T]):
def __init__(self, capacity: int, ttl: float):
self._cache: OrderedDict[str, tuple[T, float]] = OrderedDict()
self._capacity = capacity
self._ttl = ttl
self._lock = threading.RLock()
def get(self, key: str) -> Optional[T]:
with self._lock:
if key not in self._cache:
return None
value, timestamp = self._cache[key]
if time.time() - timestamp > self._ttl:
del self._cache[key]
return None
# LRU: 移动到末尾
self._cache.move_to_end(key)
return value
- Web框架集成
# 使用案例: FastAPI + 异步数据库
"构建一个高性能的API服务,支持数据库连接池"
# Python专家会创建:
from fastapi import FastAPI, Depends
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from contextlib import asynccontextmanager
@asynccontextmanager
async def lifespan(app: FastAPI):
# 启动时创建连接池
app.state.db_engine = create_async_engine(
DATABASE_URL,
pool_size=20,
max_overflow=30
)
yield
# 关闭时清理资源
await app.state.db_engine.dispose()
app = FastAPI(lifespan=lifespan)
⚡ 主动触发条件
- 检测到Python性能瓶颈时
- 需要重构复杂Python逻辑时
- 处理大数据量或高并发需求时
- 集成机器学习模型时
Java专家 (java-pro)
🎯 核心专长
- 现代Java特性: Stream API、Lambda、方法引用、模块系统
- 并发编程: CompletableFuture、并行流、线程池、锁优化
- JVM调优: GC优化、内存分析、性能监控、堆外内存
- Spring生态: Spring Boot、Spring Security、Spring Data、微服务
- 企业模式: DDD、CQRS、事件驱动、分布式事务
- 响应式编程: Project Reactor、RxJava、非阻塞IO
🚀 典型使用场景
- 高并发服务设计
// 使用案例: 设计高吞吐量的订单处理服务
"构建一个能处理每秒10万订单的服务"
@Service
@Slf4j
public class OrderProcessingService {
private final OrderRepository orderRepository;
private final PaymentService paymentService;
private final Executor taskExecutor;
@Async("orderProcessingExecutor")
public CompletableFuture<OrderResult> processOrderAsync(Order order) {
return CompletableFuture
.supplyAsync(() -> validateOrder(order), taskExecutor)
.thenCompose(validOrder -> processPayment(validOrder))
.thenCompose(paidOrder -> saveOrder(paidOrder))
.thenApply(this::generateResult)
.exceptionally(this::handleProcessingError);
}
@Bean("orderProcessingExecutor")
public Executor orderProcessingExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(50);
executor.setMaxPoolSize(200);
executor.setQueueCapacity(1000);
executor.setThreadNamePrefix("OrderProcessor-");
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
return executor;
}
}
- 微服务架构实现
// 使用案例: 实现服务熔断和降级
"为微服务添加熔断器和重试机制"
@Component
public class UserServiceClient {
@Retryable(value = {Exception.class},
maxAttempts = 3,
backoff = @Backoff(delay = 1000, multiplier = 2))
@CircuitBreaker(name = "user-service", fallbackMethod = "getUserFallback")
public User getUser(Long userId) {
return restTemplate.getForObject(
"/api/users/{id}", User.class, userId);
}
@TimeLimiter(name = "user-service")
public CompletableFuture<User> getUserAsync(Long userId) {
return CompletableFuture.supplyAsync(() -> getUser(userId));
}
public User getUserFallback(Long userId, Exception ex) {
log.warn("Fallback for user {}: {}", userId, ex.getMessage());
return User.builder()
.id(userId)
.name("Unknown User")
.build();
}
}
⚡ 主动触发条件
- Spring Boot应用优化需求
- 高并发性能问题
- 企业级架构设计
- JVM内存或GC问题
TypeScript专家 (typescript-pro)
🎯 核心专长
- 高级类型系统: 泛型约束、条件类型、映射类型、模板字面量类型
- 类型体操: 类型推断、类型变换、递归类型、分布式条件类型
- 企业级架构: 模块系统、命名空间、声明合并、模块解析
- 装饰器: 元数据、反射、依赖注入、AOP实现
- 性能优化: 编译优化、类型检查优化、增量编译
- 现代框架集成: React、Vue、Node.js的类型安全实现
🚀 典型使用场景
- 类型安全的状态管理
// 使用案例: 设计类型安全的Redux Store
"创建一个完全类型安全的状态管理系统"
// TypeScript专家会设计:
type AppState = {
user: UserState;
posts: PostsState;
ui: UIState;
};
type ActionType =
| { type: 'USER_LOGIN'; payload: { user: User; token: string } }
| { type: 'USER_LOGOUT' }
| { type: 'POSTS_LOAD_START' }
| { type: 'POSTS_LOAD_SUCCESS'; payload: { posts: Post[] } }
| { type: 'POSTS_LOAD_ERROR'; payload: { error: string } };
// 类型安全的reducer
const appReducer = (state: AppState, action: ActionType): AppState => {
switch (action.type) {
case 'USER_LOGIN':
return {
...state,
user: {
...state.user,
data: action.payload.user,
isAuthenticated: true,
token: action.payload.token,
},
};
// 其他case会有完整的类型推断和检查
}
};
// 类型安全的selector
const createTypedSelector = <T>(selector: (state: AppState) => T) => selector;
const selectUser = createTypedSelector(state => state.user.data);
const selectPosts = createTypedSelector(state => state.posts.items);
- 高级泛型实用工具
// 使用案例: 创建API客户端的类型安全包装
"设计一个类型安全的API客户端"
// 递归深度只读类型
type DeepReadonly<T> = {
readonly [P in keyof T]: T[P] extends (infer U)[]
? readonly DeepReadonly<U>[]
: T[P] extends Record<string, any>
? DeepReadonly<T[P]>
: T[P];
};
// API端点配置类型
type ApiEndpoint<TRequest = void, TResponse = unknown> = {
method: 'GET' | 'POST' | 'PUT' | 'DELETE';
path: string;
request: TRequest;
response: TResponse;
};
// 类型安全的API客户端
class TypeSafeApiClient {
async call<T extends ApiEndpoint>(
endpoint: T,
...[request]: T['request'] extends void ? [] : [T['request']]
): Promise<T['response']> {
const response = await fetch(endpoint.path, {
method: endpoint.method,
body: request ? JSON.stringify(request) : undefined,
headers: { 'Content-Type': 'application/json' },
});
return response.json();
}
}
// 使用示例 - 完全类型安全
const userEndpoint: ApiEndpoint<{ id: number }, User> = {
method: 'GET',
path: '/api/users',
request: { id: 1 },
response: {} as User,
};
const client = new TypeSafeApiClient();
// TypeScript会推断出正确的请求和响应类型
const user = await client.call(userEndpoint, { id: 123 });
⚡ 主动触发条件
- 复杂类型系统设计需求
- 企业级TypeScript架构
- 类型安全性问题
- 高级类型推断需求
JavaScript专家 (javascript-pro)
🎯 核心专长
- ES6+特性: 解构、模板字符串、箭头函数、模块系统
- 异步编程: Promise、async/await、事件循环理解、并发模式
- 函数式编程: 高阶函数、闭包、不可变性、函数组合
- 性能优化: V8引擎优化、内存泄漏检测、Bundle分析
- Node.js生态: Express、Koa、微服务、流处理
- 现代工具链: Webpack、Vite、ESLint、Prettier
🚀 典型使用场景
- 事件循环优化
// 使用案例: 处理大量数据而不阻塞UI
"处理10万条记录时页面卡顿,需要优化"
// JavaScript专家会重构为:
async function processLargeDataset(data, chunkSize = 1000) {
const results = [];
for (let i = 0; i < data.length; i += chunkSize) {
const chunk = data.slice(i, i + chunkSize);
// 使用 MessageChannel 避免阻塞主线程
const processed = await new Promise((resolve) => {
const channel = new MessageChannel();
const worker = new Worker('./dataProcessor.js');
channel.port1.onmessage = (e) => resolve(e.data);
worker.postMessage({ chunk, port: channel.port2 }, [channel.port2]);
});
results.push(...processed);
// 让出控制权,防止阻塞UI
await new Promise(resolve => setTimeout(resolve, 0));
}
return results;
}
- 高性能状态管理
// 使用案例: 创建轻量级响应式状态管理
"需要一个简单但高效的状态管理方案"
class ReactiveStore {
constructor(initialState = {}) {
this.state = new Proxy(initialState, {
set: (target, property, value) => {
const oldValue = target[property];
target[property] = value;
if (oldValue !== value) {
this.notify(property, value, oldValue);
}
return true;
}
});
this.subscribers = new Map();
this.computedCache = new Map();
}
subscribe(key, callback) {
if (!this.subscribers.has(key)) {
this.subscribers.set(key, new Set());
}
this.subscribers.get(key).add(callback);
return () => this.subscribers.get(key)?.delete(callback);
}
computed(key, computeFn, dependencies) {
const compute = () => {
const result = computeFn(this.state);
this.computedCache.set(key, result);
return result;
};
dependencies.forEach(dep => {
this.subscribe(dep, () => compute());
});
return () => this.computedCache.get(key);
}
}
⚡ 主动触发条件
- JavaScript性能瓶颈
- 异步流程复杂化
- Node.js应用优化
- 前端工具链配置
Go专家 (golang-pro)
🎯 核心专长
- 并发模型: Goroutines、Channels、Select语句、Context
- 接口设计: 隐式接口、组合模式、依赖注入
- 性能优化: 内存对齐、逃逸分析、GC调优、pprof分析
- 标准库: io、net、context、sync等核心包的高级用法
- 微服务: gRPC、HTTP服务、中间件、服务发现
- 并发模式: Worker Pool、Pipeline、Fan-in/Fan-out
🚀 典型使用场景
- 高并发数据处理
// 使用案例: 处理高并发API请求
"构建一个能处理10万QPS的HTTP服务"
package main
import (
"context"
"fmt"
"net/http"
"runtime"
"sync"
"time"
)
type Server struct {
workerPool chan chan Request
workers []Worker
quit chan bool
}
type Request struct {
Data interface{}
Response chan Response
}
type Worker struct {
ID int
Work chan Request
WorkerPool chan chan Request
QuitCh chan bool
}
func NewServer(maxWorkers int) *Server {
pool := make(chan chan Request, maxWorkers)
server := &Server{
workerPool: pool,
quit: make(chan bool),
}
// 创建工作者
server.workers = make([]Worker, maxWorkers)
for i := 0; i < maxWorkers; i++ {
worker := Worker{
ID: i,
Work: make(chan Request),
WorkerPool: pool,
QuitCh: make(chan bool),
}
worker.Start()
server.workers[i] = worker
}
return server
}
func (w *Worker) Start() {
go func() {
for {
w.WorkerPool <- w.Work
select {
case request := <-w.Work:
// 处理请求
result := processRequest(request.Data)
request.Response <- Response{Data: result}
case <-w.QuitCh:
return
}
}
}()
}
// 优雅关闭
func (s *Server) Shutdown(ctx context.Context) error {
close(s.quit)
done := make(chan bool, len(s.workers))
for _, worker := range s.workers {
go func(w Worker) {
close(w.QuitCh)
done <- true
}(worker)
}
// 等待所有worker关闭或超时
for i := 0; i < len(s.workers); i++ {
select {
case <-done:
case <-ctx.Done():
return ctx.Err()
}
}
return nil
}
⚡ 主动触发条件
- Go并发问题
- 微服务架构需求
- 高性能服务设计
- 系统级编程需求
Rust专家 (rust-pro)
🎯 核心专长
- 所有权系统: 借用检查、生命周期、智能指针
- 零成本抽象: trait、泛型、宏系统、编译期计算
- 并发安全: Arc、Mutex、RwLock、Atomic类型、异步编程
- 性能优化: SIMD、内联汇编、基准测试、profiling
- 系统编程: FFI、不安全代码、内存管理、操作系统接口
- 现代生态: Tokio、Serde、Diesel、WebAssembly
🚀 典型使用场景
- 高性能计算库
// 使用案例: 实现零拷贝的数据处理管道
"需要一个内存安全但极高性能的数据处理系统"
use std::marker::PhantomData;
use std::sync::{Arc, RwLock};
use tokio::sync::mpsc;
// 零拷贝数据容器
pub struct ZeroCopyBuffer<T> {
data: Arc<RwLock<Vec<T>>>,
_phantom: PhantomData<T>,
}
impl<T: Clone + Send + Sync + 'static> ZeroCopyBuffer<T> {
pub fn new(capacity: usize) -> Self {
Self {
data: Arc::new(RwLock::new(Vec::with_capacity(capacity))),
_phantom: PhantomData,
}
}
pub fn view(&self) -> BufferView<T> {
BufferView {
data: Arc::clone(&self.data),
_phantom: PhantomData,
}
}
}
pub struct BufferView<T> {
data: Arc<RwLock<Vec<T>>>,
_phantom: PhantomData<T>,
}
// 高性能异步处理管道
pub struct ProcessingPipeline<T, U> {
input_tx: mpsc::UnboundedSender<T>,
output_rx: mpsc::UnboundedReceiver<U>,
workers: Vec<tokio::task::JoinHandle<()>>,
}
impl<T, U> ProcessingPipeline<T, U>
where
T: Send + 'static,
U: Send + 'static,
{
pub async fn new<F, Fut>(
worker_count: usize,
processor: F,
) -> Self
where
F: Fn(T) -> Fut + Send + Sync + Clone + 'static,
Fut: std::future::Future<Output = U> + Send,
{
let (input_tx, mut input_rx) = mpsc::unbounded_channel();
let (output_tx, output_rx) = mpsc::unbounded_channel();
let mut workers = Vec::with_capacity(worker_count);
for _ in 0..worker_count {
let mut rx = input_rx.clone();
let tx = output_tx.clone();
let proc = processor.clone();
let worker = tokio::spawn(async move {
while let Some(item) = rx.recv().await {
let result = proc(item).await;
if tx.send(result).is_err() {
break;
}
}
});
workers.push(worker);
}
Self {
input_tx,
output_rx,
workers,
}
}
}
⚡ 主动触发条件
- 系统级性能要求
- 内存安全关键场景
- WebAssembly项目
- 高并发底层服务
C++专家 (cpp-pro)
🎯 核心专长
- 现代C++: C++14/17/20特性、概念、模块、协程
- 内存管理: RAII、智能指针、自定义分配器、内存池
- 模板编程: 变参模板、SFINAE、类型特征、元编程
- 性能优化: 编译器优化、内联、分支预测、缓存友好设计
- STL高级用法: 算法、容器、迭代器、函数对象
- 并发编程: 原子操作、内存序、线程池、无锁数据结构
🚀 典型使用场景
- 高性能容器设计
// 使用案例: 设计缓存友好的高性能容器
"需要一个比std::vector更快的动态数组"
#include <memory>
#include <iterator>
#include <algorithm>
template<typename T, typename Allocator = std::allocator<T>>
class fast_vector {
public:
using value_type = T;
using allocator_type = Allocator;
using size_type = std::size_t;
using iterator = T*;
using const_iterator = const T*;
private:
static constexpr size_type INITIAL_CAPACITY = 16;
static constexpr double GROWTH_FACTOR = 1.618; // 黄金比例增长
T* data_;
size_type size_;
size_type capacity_;
[[no_unique_address]] Allocator alloc_;
// 预取优化
void prefetch_write(void* addr) const noexcept {
#ifdef __builtin_prefetch
__builtin_prefetch(addr, 1, 3);
#endif
}
public:
fast_vector(const Allocator& alloc = Allocator{})
: data_(nullptr), size_(0), capacity_(0), alloc_(alloc) {}
template<typename... Args>
void emplace_back(Args&&... args) {
if (size_ == capacity_) [[unlikely]] {
reserve_grow();
}
// 预取下一个可能的写入位置
if (size_ + 1 < capacity_) [[likely]] {
prefetch_write(data_ + size_ + 1);
}
std::construct_at(data_ + size_, std::forward<Args>(args)...);
++size_;
}
void push_back(const T& value) {
emplace_back(value);
}
void push_back(T&& value) {
emplace_back(std::move(value));
}
// 批量操作优化
template<typename InputIt>
void insert_range(const_iterator pos, InputIt first, InputIt last) {
static_assert(std::is_same_v<typename std::iterator_traits<InputIt>::value_type, T>);
const auto distance = std::distance(first, last);
const auto index = pos - data_;
if (size_ + distance > capacity_) {
reserve(std::max(capacity_ * GROWTH_FACTOR, size_ + distance));
}
// 使用memmove进行优化移动(对于trivial类型)
if constexpr (std::is_trivially_copyable_v<T>) {
std::memmove(data_ + index + distance, data_ + index,
(size_ - index) * sizeof(T));
std::uninitialized_copy(first, last, data_ + index);
} else {
// 非trivial类型使用标准算法
std::move_backward(data_ + index, data_ + size_,
data_ + size_ + distance);
std::uninitialized_copy(first, last, data_ + index);
}
size_ += distance;
}
private:
void reserve_grow() {
const size_type new_cap = capacity_ == 0 ?
INITIAL_CAPACITY :
static_cast<size_type>(capacity_ * GROWTH_FACTOR);
reserve(new_cap);
}
};
⚡ 主动触发条件
- C++性能关键代码
- 现代C++特性需求
- 内存优化需求
- 高性能计算场景
🏗️ 架构与系统设计代理
后端架构师 (backend-architect)
功能: 设计RESTful API、微服务边界、数据库模式
使用场景: 创建新的后端服务或API时主动调用
示例:
帮我设计一个电商系统的微服务架构
云架构师 (cloud-architect)
功能: AWS/Azure/GCP基础设施、Terraform IaC、云成本优化
使用场景: 云基础设施、成本优化、迁移规划
示例:
帮我设计一个自动扩展的AWS架构
架构评审师 (architect-reviewer)
功能: 评审代码变更的架构一致性和模式
使用场景: 结构更改、新服务、API修改后主动调用
示例:
评审这个新的API设计是否符合架构原则
GraphQL架构师 (graphql-architect)
功能: 设计GraphQL schema、解析器、联邦
使用场景: GraphQL API设计或性能问题
示例:
帮我设计一个高性能的GraphQL API
🎨 前端与移动开发代理
前端开发师 (frontend-developer)
功能: 构建React组件、响应式布局、客户端状态管理
使用场景: 创建UI组件或修复前端问题时主动调用
示例:
帮我创建一个响应式的数据表格组件
UI/UX设计师 (ui-ux-designer)
功能: 创建界面设计、线框图、设计系统
使用场景: 设计系统、用户流程、界面优化
示例:
帮我设计一个用户友好的登录流程
React Native开发师 (mobile-developer)
功能: 开发React Native或Flutter应用,原生集成
使用场景: 移动功能、跨平台代码、应用优化
示例:
帮我实现一个跨平台的推送通知系统
iOS开发师 (ios-developer)
功能: 原生iOS应用开发,Swift/SwiftUI
使用场景: iOS特定功能、App Store优化
示例:
帮我实现一个原生的iOS相机功能
Flutter专家 (flutter-expert)
功能: 精通Flutter开发,Dart、小部件、平台集成
使用场景: Flutter架构、UI实现、跨平台功能
示例:
帮我优化这个Flutter应用的性能
Unity开发师 (unity-developer)
功能: 构建Unity游戏,优化C#脚本、高效渲染
使用场景: Unity性能问题、游戏机制、跨平台构建
示例:
帮我优化这个Unity游戏的渲染性能
🗄️ 数据库与数据处理代理
SQL专家 (sql-pro)
功能: 编写复杂SQL查询、优化执行计划、设计规范化模式
使用场景: 查询优化、复杂连接、数据库设计
示例:
帮我优化这个慢查询的性能
数据库管理员 (database-admin)
功能: 管理数据库操作、备份、复制、监控
使用场景: 数据库设置、运维问题、恢复程序
示例:
帮我设置一个MySQL主从复制方案
数据库优化师 (database-optimizer)
功能: 优化SQL查询、设计高效索引、处理数据库迁移
使用场景: 数据库性能问题或模式优化
示例:
帮我分析并优化这个数据库的查询性能
数据工程师 (data-engineer)
功能: 构建ETL管道、数据仓库、流处理架构
使用场景: 数据管道设计或分析基础设施
示例:
帮我设计一个实时数据处理管道
数据科学家 (data-scientist)
功能: SQL查询、BigQuery操作、数据分析专家
使用场景: 数据分析任务和查询
示例:
帮我分析用户行为数据找出关键趋势
🧠 AI与机器学习代理
AI工程师 (ai-engineer)
功能: 构建LLM应用、RAG系统、提示管道
使用场景: LLM功能、聊天机器人、AI驱动的应用
示例:
帮我构建一个基于RAG的智能问答系统
ML工程师 (ml-engineer)
功能: 实现ML管道、模型服务、特征工程
使用场景: ML模型集成或生产部署
示例:
帮我部署一个机器学习模型到生产环境
MLOps工程师 (mlops-engineer)
功能: 构建ML管道、实验跟踪、模型注册表
使用场景: ML基础设施、实验管理、管道自动化
示例:
帮我设置一个完整的MLOps流水线
提示工程师 (prompt-engineer)
功能: 为LLM和AI系统优化提示
使用场景: 构建AI功能、改进代理性能、制作系统提示
示例:
帮我优化这个AI助手的提示词
🔒 安全与质量保证代理
安全审计师 (security-auditor)
功能: 审查代码漏洞、实现安全认证、确保OWASP合规
使用场景: 安全评审、认证流程、漏洞修复时主动调用
示例:
帮我审查这个登录系统的安全性
代码评审师 (code-reviewer)
功能: 专业代码评审专家,评估质量、安全性、可维护性
使用场景: 编写或修改代码后立即调用
示例:
评审我刚写的这个API接口代码
测试自动化师 (test-automator)
功能: 创建全面的测试套件,单元、集成、端到端测试
使用场景: 测试覆盖率改进或测试自动化设置时主动调用
示例:
为这个新功能创建完整的测试套件
调试专家 (debugger)
功能: 专门处理错误、测试失败、异常行为的调试
使用场景: 遇到任何问题时主动调用
示例:
帮我调试这个内存泄漏问题
错误侦探 (error-detective)
功能: 搜索日志和代码库中的错误模式、堆栈跟踪
使用场景: 调试问题、分析日志、调查生产错误时主动调用
示例:
帮我分析这个系统崩溃的根本原因
🚀 DevOps与部署代理
部署工程师 (deployment-engineer)
功能: 配置CI/CD管道、Docker容器、云部署
使用场景: 设置部署、容器、CI/CD工作流时主动调用
示例:
帮我设置一个完整的CI/CD管道
DevOps故障排除师 (devops-troubleshooter)
功能: 调试生产问题、分析日志、修复部署失败
使用场景: 生产调试或系统故障时主动调用
示例:
帮我排查这个Kubernetes集群的问题
Terraform专家 (terraform-specialist)
功能: 编写高级Terraform模块、管理状态文件
使用场景: Terraform模块、状态问题、IaC自动化
示例:
帮我创建一个可重用的Terraform模块
网络工程师 (network-engineer)
功能: 调试网络连接、配置负载均衡器、分析流量模式
使用场景: 连接问题、网络优化、协议调试
示例:
帮我诊断这个网络延迟问题
支付集成师 (payment-integration)
功能: 集成Stripe、PayPal等支付处理器
使用场景: 实现支付、计费、订阅功能时主动调用
示例:
帮我集成Stripe支付系统
📊 性能与优化代理
性能工程师 (performance-engineer)
功能: 性能分析、优化瓶颈、实现缓存策略
使用场景: 性能问题或优化任务时主动调用
示例:
帮我优化这个网站的加载速度
风险管理师 (risk-manager)
功能: 监控投资组合风险、R倍数、头寸限制
使用场景: 风险评估、交易跟踪、投资组合保护
示例:
帮我分析这个投资组合的风险水平
量化分析师 (quant-analyst)
功能: 构建金融模型、回测交易策略、分析市场数据
使用场景: 量化金融、交易算法、风险分析
示例:
帮我构建一个股票交易策略回测系统
🔍 搜索与研究代理
搜索专家 (search-specialist)
功能: 使用高级搜索技术的专业网络研究员
使用场景: 深度研究、信息收集、趋势分析时主动调用
示例:
帮我研究最新的AI发展趋势
通用代理 (general-purpose)
功能: 研究复杂问题、搜索代码、执行多步骤任务的通用代理
使用场景: 搜索关键词或文件且不确定能否快速找到时使用
示例:
帮我找到项目中所有与用户认证相关的代码
📝 内容与文档代理
SEO内容写手 (seo-content-writer)
功能: 基于关键词撰写SEO优化的内容
使用场景: 内容创建任务时主动调用
示例:
帮我写一篇关于机器学习的SEO优化文章
文档架构师 (docs-architect)
功能: 从现有代码库创建全面的技术文档
使用场景: 系统文档、架构指南、技术深度分析时主动调用
示例:
为这个微服务系统创建完整的架构文档
API文档师 (api-documenter)
功能: 创建OpenAPI/Swagger规范、生成SDK
使用场景: API文档或客户端库生成时主动调用
示例:
为这个REST API创建完整的文档
教程工程师 (tutorial-engineer)
功能: 从代码创建逐步教程和教育内容
使用场景: 入门指南、功能教程、概念解释时主动调用
示例:
为这个新功能创建用户教程
🛠️ 专业工具代理
事故响应员 (incident-responder)
功能: 紧急处理生产事故
使用场景: 生产问题发生时立即使用
示例:
系统出现严重故障,需要紧急处理
遗留系统现代化师 (legacy-modernizer)
功能: 重构遗留代码库、迁移过时框架
使用场景: 遗留系统更新、框架迁移、技术债务减少时主动调用
示例:
帮我将这个老旧的jQuery应用迁移到React
上下文管理器 (context-manager)
功能: 管理多代理和长期任务的上下文
使用场景: 协调复杂的多代理工作流
示例:
协调多个代理完成这个大型重构项目
DX优化师 (dx-optimizer)
功能: 开发者体验专家,改进工具、设置、工作流
使用场景: 设置新项目、团队反馈后、发现开发摩擦时主动调用
示例:
优化这个项目的开发环境配置
🎯 专业领域代理
Minecraft Bukkit专家 (minecraft-bukkit-pro)
功能: 精通Minecraft服务器插件开发
使用场景: 插件架构、游戏机制、跨版本兼容性时主动调用
示例:
帮我开发一个Minecraft服务器管理插件
销售自动化师 (sales-automator)
功能: 起草冷邮件、跟进、提案模板
使用场景: 销售推广或客户培养时主动调用
示例:
帮我创建一套完整的销售邮件模板
客户支持师 (customer-support)
功能: 处理支持工单、FAQ响应、客户邮件
使用场景: 客户咨询或支持文档时主动调用
示例:
帮我创建产品的FAQ文档
内容营销师 (content-marketer)
功能: 撰写博客文章、社交媒体内容、电子邮件通讯
使用场景: 营销内容或社交媒体帖子时主动调用
示例:
为新产品发布写一篇营销博客
商业分析师 (business-analyst)
功能: 分析指标、创建报告、跟踪KPI
使用场景: 商业指标或投资者更新时主动调用
示例:
帮我分析上季度的用户增长数据
法律顾问 (legal-advisor)
功能: 起草隐私政策、服务条款、免责声明
使用场景: 法律文档、合规文本、监管要求时主动调用
示例:
为我的网站起草GDPR合规的隐私政策
HR专家 (hr-pro)
功能: 专业、合规的HR合作伙伴,处理招聘、入职离职、绩效管理
使用场景: HR政策、员工管理、合规模板
示例:
帮我制定远程工作政策
💡 使用建议
最佳实践
- 具体描述任务: 提供详细的上下文和需求
- 选择合适代理: 根据任务类型选择最专业的代理
- 组合使用: 复杂项目可以结合多个代理
- 主动调用: 某些代理会根据任务自动调用
使用技巧
- 代理会根据你的具体需求自动选择最合适的专业领域
- 可以在一次对话中使用多个代理
- 代理会保持任务上下文,无需重复说明背景
常见应用场景
- 新项目启动: 使用架构师代理设计系统
- 代码优化: 使用对应语言的专家代理
- 问题排查: 使用调试专家和错误侦探
- 部署上线: 使用DevOps和部署相关代理
- 文档编写: 使用文档和API相关代理
🎯 代理协作策略
经典代理组合模式
1. 全栈开发流水线
architect-reviewer → backend-architect → [语言专家] →
frontend-developer → database-optimizer → test-automator →
security-auditor → deployment-engineer
使用场景: 从零构建完整的Web应用
协作优势: 每个环节都有专门代理负责,确保最佳实践
2. 性能优化流水线
performance-engineer → [语言专家] → database-optimizer →
cloud-architect → monitoring-specialist
使用场景: 系统性能问题诊断和优化
协作优势: 从代码到基础设施的全方位优化
3. 安全加固流水线
security-auditor → [语言专家] → network-engineer →
legal-advisor → compliance-checker
使用场景: 企业级安全合规需求
协作优势: 技术和法律双重保障
代理间通信机制
上下文共享
代理间会自动共享以下信息:
- 项目架构: 技术栈、框架选择、设计模式
- 代码规范: 命名规则、格式化标准、最佳实践
- 性能需求: 延迟要求、吞吐量目标、资源限制
- 安全策略: 认证方式、加密标准、合规要求
自动触发规则
触发条件:
代码变更:
- code-reviewer (always)
- security-auditor (if auth/payment related)
- performance-engineer (if critical path)
部署操作:
- incident-responder (if failure)
- monitoring-specialist (always)
- backup-manager (if database changes)
性能异常:
- performance-engineer (always)
- database-optimizer (if DB related)
- cloud-architect (if infrastructure related)
🔧 高级使用技巧
1. 智能任务分解
复杂任务示例: “构建一个实时聊天应用”
系统会自动分解为:
📋 任务分解结果:
├── 🏗️ backend-architect: 设计实时通信架构
├── 🗄️ database-optimizer: 设计消息存储方案
├── 🔒 security-auditor: 设计认证和权限系统
├── 🎨 frontend-developer: 实现聊天UI组件
├── ⚡ performance-engineer: 优化实时性能
├── 🚀 deployment-engineer: 配置WebSocket集群
└── 🧪 test-automator: 创建端到端测试
2. 条件触发与智能路由
智能路由示例:
# 用户请求: "这个API响应很慢"
# 系统分析后的代理调用链:
1. performance-engineer → 分析性能瓶颈
↓ 发现是数据库问题
2. database-optimizer → 优化SQL查询
↓ 发现需要架构调整
3. backend-architect → 重新设计数据访问层
↓ 需要缓存策略
4. cloud-architect → 设计Redis缓存方案
↓ 需要监控
5. monitoring-specialist → 设置性能监控
3. 渐进式优化策略
阶段一: 快速修复
- debugger: 立即解决阻塞问题
- performance-engineer: 快速性能调优
阶段二: 架构优化
- architect-reviewer: 评估架构债务
- backend-architect: 设计改进方案
阶段三: 全面升级
- legacy-modernizer: 技术栈升级
- cloud-architect: 基础设施现代化
4. 专业领域深度整合
金融科技项目:
quant-analyst + risk-manager + security-auditor +
legal-advisor + compliance-checker
游戏开发项目:
unity-developer + performance-engineer +
graphics-optimizer + multiplayer-architect
机器学习项目:
ai-engineer + ml-engineer + mlops-engineer +
data-engineer + performance-engineer
💡 最佳实践指南
1. 代理选择策略
根据项目规模选择
小型项目 (< 1万行代码):
- 优先使用通用代理如
general-purpose
- 按需添加专业代理
中型项目 (1-10万行代码):
- 建立核心代理团队 (3-5个)
- 设置自动触发规则
大型项目 (> 10万行代码):
- 使用完整代理生态
- 启用
context-manager
协调
根据团队技能选择
新手团队:
- 多使用指导性代理如
tutorial-engineer
- 启用详细的代码审查流程
专家团队:
- 专注于架构和优化类代理
- 减少基础代码生成,增加设计指导
2. 任务描述最佳实践
✅ 推荐的描述方式
# 具体且明确
"优化这个处理1万条用户数据的Python脚本,目标是将执行时间从30秒降到3秒以内"
# 包含上下文
"在我们的电商系统中,添加一个支持并发的库存管理模块,需要防止超卖问题"
# 指定约束条件
"使用TypeScript重构这个React组件,要求保持向后兼容且提高类型安全性"
❌ 避免的描述方式
# 过于模糊
"帮我写个程序"
# 缺少上下文
"修复这个bug"
# 没有明确目标
"优化一下性能"
3. 协作流程优化
并行工作流
迭代改进流程
1. 快速原型 → general-purpose
2. 架构审查 → architect-reviewer
3. 专业实现 → [对应语言专家]
4. 质量保证 → code-reviewer + test-automator
5. 性能优化 → performance-engineer
6. 安全审查 → security-auditor
7. 生产部署 → deployment-engineer
4. 错误处理与恢复
常见问题及解决方案
问题: 代理选择不当
解决方案: 使用 general-purpose 重新分析需求
备选方案: 明确指定所需的专业代理
问题: 上下文丢失
解决方案: 启用 context-manager 管理长期项目
预防措施: 在重要节点保存项目状态
问题: 代理间冲突
解决方案: 使用 architect-reviewer 协调冲突
标准流程: 建立明确的代理优先级规则
🚀 进阶使用指南
1. 自定义工作流
创建项目模板
# 项目: 微服务API开发
workflow_template:
name: "microservice-api"
agents:
- backend-architect:
role: "primary"
triggers: ["project_start"]
- security-auditor:
role: "reviewer"
triggers: ["code_commit"]
- test-automator:
role: "automation"
triggers: ["feature_complete"]
quality_gates:
- coverage_threshold: 80%
- security_scan: "passed"
- performance_test: "< 200ms"
设置自动化规则
# 性能监控触发
if response_time > 500ms:
trigger_agents([
"performance-engineer",
"database-optimizer",
"cloud-architect"
])
# 安全事件触发
if security_alert:
trigger_agents([
"incident-responder",
"security-auditor",
"legal-advisor"
])
2. 企业级集成
CI/CD集成
# .github/workflows/claude-agents.yml
name: Claude Agents Integration
on: [push, pull_request]
jobs:
code-review:
steps:
- uses: actions/checkout@v3
- name: Code Review
run: |
claude-agent code-reviewer \
--files="${{ github.event.pull_request.changed_files }}" \
--standards="./code-standards.yml"
security-scan:
steps:
- name: Security Audit
run: |
claude-agent security-auditor \
--scan-type="comprehensive" \
--report-format="sarif"
监控集成
// 实时性能监控
const claudeMonitoring = {
performance: {
threshold: 200, // ms
agent: 'performance-engineer'
},
errors: {
threshold: 0.01, // 1% error rate
agent: 'debugger'
},
security: {
events: ['auth_failure', 'injection_attempt'],
agent: 'incident-responder'
}
};
3. 团队协作模式
代码审查流程
1. 开发者提交PR
2. code-reviewer 自动审查
3. 如有问题,相关专家介入
4. architect-reviewer 审查架构影响
5. security-auditor 检查安全问题
6. 通过后合并代码
知识传承系统
senior-developer + tutorial-engineer →
生成新人培训材料
expert-team + docs-architect →
创建技术文档和最佳实践库
🔍 常见问题与解决方案
Q: 如何选择合适的代理?
A: 遵循以下原则:
- 任务匹配: 选择专业领域最匹配的代理
- 复杂度评估: 简单任务用通用代理,复杂任务用专业代理
- 时间权衡: 紧急任务可能需要多代理并行工作
- 质量要求: 高质量要求建议使用完整的代理流水线
Q: 代理给出的建议不符合项目需求怎么办?
A: 可以采用以下策略:
- 提供更多上下文: 详细描述项目背景、技术栈、约束条件
- 明确指定代理: 如果知道需要特定专业知识,直接指定代理类型
- 迭代优化: 基于初步建议提出改进要求
- 组合使用: 多个代理协作可能得到更好的解决方案
Q: 如何管理长期项目的代理协作?
A: 建议使用以下方法:
- 启用 context-manager: 专门处理长期项目的上下文管理
- 设置里程碑: 在关键节点总结和保存项目状态
- 建立标准流程: 为常见任务建立标准的代理调用流程
- 定期评估: 定期使用 architect-reviewer 评估整体架构
Q: 如何确保代理建议的安全性?
A: 安全保障措施:
- 自动安全审查: security-auditor 会主动审查涉及安全的代码
- 多层验证: 重要功能会有多个代理交叉验证
- 最佳实践集成: 代理内置了行业最佳实践和安全标准
- 人工审核: 关键决策仍建议人工最终确认
📚 扩展阅读与资源
官方文档
社区资源
培训资料
🎯 总结
Claude Code的68个专业智能代理构成了一个完整的开发生态系统。通过合理选择和组合使用这些代理,你可以:
✅ 提高开发效率: 专业代理处理专业问题,避免通用方案的局限性
✅ 保证代码质量: 多层次的审查和优化机制
✅ 降低技术风险: 内置最佳实践和安全标准
✅ 加速团队成长: 通过代理协作学习先进的开发模式
这份完整的使用手册涵盖了Claude Code智能代理系统的所有核心概念、使用方法、最佳实践和高级技巧。希望能帮助你充分利用这个强大的AI开发助手生态系统!